

II B. Tech II Semester Regular Examinations, June/July - 2022

THERMAL ENGINEERING-I

(Mechanical Engineering)

Ti	me: :	3 hours Max. Marks: 70	
		Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks	-
1		Derive the air standard .efficiency of Dual Cycle.	[14M]
		Or	
2	a)	How the Actual cycles differ from the air standard cycles?	[7M]
	b)	Discuss about the time loss factor occurred in IC engine with a neat sketch.	[7M]
		UNIT-II	
3	a)	Explain the working of splash lubricating system with neat sketch.	[7M]
	b)	Mention the reasons why the water cooling system is superior to air cooling system.	[7M]
		Or	
4	a)	Explain the working of the fuel injector with a neat sketch.	[7M]
	b)	What is the importance of spark plug in SI engine? Explain the working of spark plug with a neat diagram.	[7M]
		UNIT-III	
5	a)	Explain the phenomenon of knocking in SI engine. State the adverse effects caused due to knocking.	[7M]
	b)	List out the functions of nozzles in CI Engines. Explain why the nozzles are so	[7M]
		Important in compression ignition engines. Or	
6	a)	Discuss why the preignition is more dangerous in multi cylinder engines than in	[7M]
	,	single cylinder engine.	
	b)	Discuss the advantages and disadvantages of F-head combustion chambers over the normal combustion chamber.	[7M]
		UNIT-IV	
7		A four stroke engine having a cylinder of 250 mm diameter and stroke 450 mm has a volumetric efficiency of 80%, ratio of air to gas is 8 to 1, calorific value of gas is 20 MJ/m ³ at NTP. Find the heat supplied to the engine per working cycle. If the compression ratio is 5, what is the heating value of the mixture per working stroke per m ³ of total cylinder volume?	[14M]
		Or	
8		The air flow to a four cylinder four stroke gasoline engine was measured by means of a 8 cm diameter sharp edged orifice with $C_d = 0.65$. During a test the following data were recorded. Bore=10cm, Stroke=15 cm, Engine speed=2500 rpm, Brake power=36 kW, Fuel consumption=10kg/hr, Calorific value of fuel=42 MJ/kg, Pressure drop across the orifice=4 cm of water. Atmospheric temperature and pressure are 17^{0} C and 1 bar respectively. Calculate (i) Brake thermal efficiency (ii) Brake mean effective	[14M]

UNIT-V

9	a)	State the fundamental differences between the jet propulsion and rocket propulsion.	[7M]
	b)	Explain inter cooling method with neat sketch applied to gas turbine to improve the thermal efficiency of gas turbine.	[7M]
		Or	
10	a)	Explain with a neat sketch the working of a open cycle gas turbine with the P-v and T-s diagrams.	[7M]
	b)	Explain the working of turbo jet engine with a neat sketch.	[7M]

|"|"|||"|"||||

II B. Tech II Semester Regular Examinations, June/July - 2022 THERMAL ENGINEERING-I

(Mechanical Engineering)

Time: 3 hours

Max. Marks: 70

Answer any **FIVE** Questions each Question from each unit All Questions carry **Equal** Marks

in Questions early Equal Marks

UNIT-I

In an air standard Diesel cycle, the compression ratio is 16,and at the beginning of [14M] isentropic compression, the temperature is 15^{0} C and the pressure is 0.1 Mpa. Heat is added until the temperature at the end of the constant pressure process is 1480^{0} C.Calculate (a) the cut-off ratio (b) the heat supplied per kg of air (c) the cycle efficiency (d) the m.e.p

Or

2 a) Mention the methods to improve the volumetric efficiency of IC engine. [7M]

b) Discuss the exhaust blow down loss of internal combustion engine with a neat [7M] sketch.

UNIT-II

3	a)	Explain the working of Magneto ignition system with a neat sketch.	[7M]
	b)	Explain the essential properties of good lubricating oil.	[7M]
		Or	
4	a)	Explain how the turbo charged engine differ from the actual IC engines.	[7M]
	b)	Differentiate the working of Four stoke CI engine and SI engine.	[7M]
		UNIT-III	
5	a)	Explain the basic requirements of good SI engine combustion chamber.	[7M]
	b)	What is ignition lag? Discuss the effect of engine variables on ignition lag.	[7M]
		Or	

- 6 a) Mention the differences between the 'air swirl 'in CI engines with 'turbulence' in SI [7M] engines.
 - b) Explain the methods to control the knock in CI engine. [7M]

UNIT-IV

7 A six cylinder petrol engine has a volume compression ratio of 7:1.The clearance [14M] volume of each cylinder is 0.000116 m³.The engine consumes 10 kg of fuel per hour whose calorific value is 42000kJ/kg. The engine runs at 3200 rpm and the efficiency ratio is 0.8. Calculate the average indicated mean effective pressure developed.

(R20)

SET - 2

8	a)	What are the methods available for improving the performance of an engine?	[7M]
	b)	Explain the measurement of Break power.	[7M]
	UNIT-V		
9	a)	Explain the working of solid rocket with a neat sketch.	[7M]
	b)	Derive the expression for the thermal efficiency of gas turbine with regeneration using P-v and T-s diagram.	[7M]
Or			

10 A turbo-jet engine flying at a speed of 960 km/h consumes air at the rate of 54.5 [14M] kg/s. Calculate: (i) Exit velocity of jet when the enthalpy change for the nozzle is 200 kJ/kg and velocity –coefficient is 0.97 (ii) fuel flow rate in kg/s when air-fuel ratio is 75:1 (iii) Thrust specific fuel consumption (iv) Thermal efficiency of the plant when the combustion efficiency is 93% and calorific value of the fuel is 45000 kJ/kg (v) Propulsive power (vi) Propulsive efficiency (vii) overall efficiency. **Code No: R2022033**

SET - 3

II B. Tech II Semester Regular Examinations, June/July - 2022 THERMAL ENGINEERING-I

		(Mechanical Engineering)	
Time: 3 hoursMax. Marks: 70			
		Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks	
		UNIT-I	
1		Derive an expression for efficiency of Brayton cycle by representing the processes on P-v and T-s diagrams.	[14M]
		Or	
2	a)	Derive the air standard efficiency of Diesel cycle.	[7M]
	b)	Explain the rubbing loss of engine with a neat sketch.	[7M]
		UNIT-II	
3	a)	Classify the Internal combustion engines.	[7M]
	b)	Explain the working of thermo-syphon cooling system with neat sketch.	[7M]
		Or	
4	a)	Differentiate the Four stoke and Two stroke IC engines.	[7M]
	b)	Explain the working of Battery Ignition system with neat sketch.	[7M]
		UNIT-III	
5	a)	Explain how the diesel knock is differ from the detonation in SI engines.	[7M]
	b)	List out the advantages and disadvantage of induction swirl.	[7M]
		Or	
6		Explain how the engine variables affects the Delay period in IC engines.	[14M]
		UNIT-IV	
7		During a test on a diesel engine the following observations were made: The power developed by the engine is used for driving a D.C. generator. The output of the generator was 220 A at 220V; the efficiency of generator being 80%. The quantity of fuel supplied to the engine was 12 kg/h; calorific value of fuel being 42000kJ/kg. The air-fuel ratio was 20:1. The exhaust gases were passed through a exhaust gas calorimeter for which the observations were as follows: Water circulated through exhaust gas calorimeter = 550 liters/hr. Temperature rise of water through calorimeter= 40° . Temperature of exhaust gases at exit from calorimeter = 98° C. Ambient temperature= 20° C. Heat lost to jacket cooling water is 32% of the total heat supplied.	[14M]

If the specific heat of exhaust gases be 1.05kJ/kg K. Draw up the heat balance sheet on minute basis.

- 8 a) Explain the working of rope brake dynamometer with a neat sketch. [7M]
 b) Explain the air box method for the measurement of air consumption in internal combustion engine. [7M]
 9 Find the required air-fuel ratio in a gas turbine whose turbine and compressor [14M] efficiencies are 75% and 82% respectively. Maximum cycle temperature is 265% The additional states in the states
 - 865^oC. The working fluid can be taken as air ($C_p = 1$. kJ/kgK, $\gamma = 1.4$) which enters the compressor at 1 bar and 29^oC. The pressure ratio is 5. The fuel used has calorific value of 41500 kJ/kg. There is a loss of 10% of calorific value in the combustion chamber.

- 10 a) Explain the working of liquid propellant rocket engine with a neat sketch. [7M]
 - b) List out the functions of components of gas turbines. State the difference between [7M] the open cycle and closed cycle gas turbines.

Time: 3 hours

1

2

[14M]

[7M]

[7M]

Max. Marks: 70

II B. Tech II Semester Regular Examinations, June/July - 2022 **THERMAL ENGINEERING-I**

(Mechanical Engineering)

Answer any FIVE Questions each Question from each unit

All Questions carry Equal Marks ~~~~~~~ UNIT-I Derive an expression for efficiency of an Otto cycle by representing the processes on P-v and T-s diagram. Or a) Compare between OttO and Diesel Cycles. b) Explain the loss occurred due to gas exchange process with a suitable example. UNIT-II

- 3 a) Explain the importance of valve timing diagram and also quote the differences of [7M] actual and theoretical valve timing diagrams.
 - Explain the working of Wankel engine with a neat sketch. [7M] b)

Or

Explain the working of four stroke CI engine with a neat sketch. 4 [7M] a) b) Explain how the super charging engine is differ from the actual engine. [7M]

UNIT-III

- a) Discuss the different methods to suppress the abnormal compulsion in engines. 5 [7M] [7M]
 - b) Explain the procedure to rate the fuels used in the IC engines.

Or

6 Briefly explain the stages of combustion in SI engines elaborating the [14M] flame front propagation.

UNIT-IV

7 A six cylinder, 4 stroke SI engine having a piston displacement of 750cm³ per [14M] cylinder developed 80kW at 3500r.p.m. and consumed 27 kg of petrol per hour. The calorific value of petrol is 42 MJ/kg. Estimate: (i)The volumetric efficiency of the engine if the air-fuel ratio is 10 and intake air is at 0.9 bar, 32^{0} C (ii) The brake thermal efficiency (iii) The brake torque For air, R=0.287kJ/kg K

Code No: R2022033

- In a trail of a single cylinder oil engine working on dual cycle, the following [14M] observations were made:
 Compression ratio=15, Oil consumption=11 kg/hr, Calorific value of fuel=44000 kJ/kg, Air consumption=4 kg/min. Speed=2000 r.p.m, Torque on the brake drum =190 N-m, Quantity of cooling water used=15 kg/min, Temperature rise=40°C, Exhaust gas temperature=410°C, Room temperature=20°C, Cp for exhaust gases =1.17 kJ/kg K
 Calculate: (i) Brake power, (ii) Brake specific fuel consumption (iii) Brake thermal efficiency. Draw heat balance sheet on minute basis
- 9 Derive the expression for the thermal efficiency of reheating gas turbine with the P- [14M] v and T-s diagram.

Or

10 A compressor of a turbojet engine operates in standard sea level. Air with a pressure [14M] ratio of 5 and an consumption of 35 kg/s at an isentropic efficiency of 86%.calculate the work per kg of air, the power required to drive the air compressor, and the total head temperature at the compressor discharge.