(**R20**

I B. Tech II Semester Regular/Supplementary Examinations, August- 2022 MATHEMATICS-III

(Only EEE)

	Time:	3 hours Max. Mark	s: 70
		Answer any five Questions one Question from Each Unit All Questions Carry Equal Marks	~~~~~
1	c)	Unit - I	(7M)
1.	<i>a)</i>	Prove that $\nabla\left(\frac{1}{r}\right) = \frac{-r}{r^3}$	(7141)
	b)	Using Stoke's theorem to evaluate $\oint_c \bar{A} \cdot d\bar{r}$ where $\bar{A} = 2y^2 \bar{i} + 3x^2 \bar{j} - (2x+z)\bar{k}$ and <i>c</i> is the boundary of the triangle whose vertices are $(0, 0, 0)$, $(2, 0, 0)$, $(2, 2, 0)$. Or	(7M)
2.	a)	Prove that $div\left(\overline{A}\times\overline{B}\right) = \overline{B}.curl\overline{A} - \overline{A}.curl\overline{B}$	(7M)
	b)	If $\overline{F} = (x - y)\overline{i} + (x + y)\overline{j}$ Evaluate $\oint_c \overline{F} \cdot d\overline{r}$ around the curve $y = x^2$ and $y^2 = x$	(7M)
		Unit - II	
3.	a)	Use theorem on Laplace transform of derivatives to evaluate $L\left\{\frac{\cos\sqrt{t}}{\sqrt{t}}\right\}$	(7M)
	b)	Find inverse Laplace transform of $\left\{\frac{s}{(s^2+a^2)^2}\right\}$ using convolution theorem. Or	(7M)
4.	a)	FindL{ $f(t)$ }where $f(t)$ is a periodic function of period 2π and is given by	(7M)
	b)	$f(t) = \begin{cases} sint, & 0 < t < \pi \\ 0, & \pi \le t < 2\pi \end{cases}$	(714)
	0)	Find $L^{-1}\left\{\frac{s+2}{s(s^2+4)}\right\}$ Unit - III	(/101)
5.	a)	$\left(\begin{array}{c} 2x \end{array} \right)$	(7M)
		Find the Fourier series of $f(x) = \begin{cases} 1 + \frac{\pi}{\pi} & \text{if } -\pi \le x < 0\\ 1 - \frac{2x}{\pi} & \text{if } 0 \le x < \pi \end{cases}$	
		Hence deduce that $1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$	
	b)	Find the Fourier transform of $f(x)$ defend by $f(x) = \begin{cases} x & \text{if } x < a \\ 0 & \text{if } x > a \end{cases}$ Or	(7M)
6.	a)	Find the Half range cosine series of $f(x) = e^x$ in [0,1]	(7M)
	b)	Find inverse Fourier sine transform of $\frac{1}{p}e^{-ap}$	(7M)

Code No: R201206

$$(\mathbf{R20})$$

Unit - IV

7.	a)	Solve the PDE $p^{1/3} - q^{1/3} = 3x - 2y$	(7M)
	b)	Find the partial differential equation by eliminating arbitrary function from $ax+by+cz = \phi(x^2 + y^2 + z^2)$	(7M)
		Or	
8.	a)	From the partial differential equation of all planes which are at a constant distance	(7M)
		'a' from the origin.	
	b)	Solve the PDE $(mz - ny)p + (nx - lz)q = ly - mx$	(7M)
		Unit - V	
9.	a)	Solve the partial differential equation $(D^2 - 2DD^1 + D^{1^2})z = \sin(2x + 3y)$	(7M)
	b)	Solve the PDE $3\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = 0$ and $u(x, y) = 4e^{-x}$ by the method of variation of	(7M)
		parameters.	
		Or	
10.	a)	Solve the partial differential equation $(D^2 - D^{1^2})z = x^2 + y^2$	(7M)
	b)	A rectangular plate with insulated surface is 8 cm. wide. If the temperature along	(7M)
		one short edge y = 8 cm. is given by $100\sin\frac{\pi x}{2}$, 0 < x < 8 while the two long edges	

x = 0 and x = 8 and other edge are kept 0^{0} c. Find the steady state temperature at any point on the plane.

2 of 2

I B. Tech II Semester Regular/Supplementary Examinations, August- 2022 MATHEMATICS-III (Only EEE)

	Time:	3 hours	Max. Marks: 70
		Answer any five Questions one Question from Each Unit All Questions Carry Equal Marks	
1	a)	Unit - I Show that $\overline{F} = (e^x z - 2xy)\overline{i} - (x^2 - 1)\overline{i} + (e^x + z)\overline{k}$ is conservative field. Hence	e Evaluate (7 M)
		$\oint \overline{F} \cdot d\overline{r}$ where c is the end point of the curve (0, 1,-1) and (2, 3, 0).	
	b)	Prove that $\nabla^2 \left(\frac{1}{r}\right) = 0$	(7M)
		Or	
2	a)	Prove that $\nabla(e^{r^2}) = 2e^{r^2} \overline{r}$	(7M)
	b)	Verify Green's theorem for $\int_{c} (3x^2 - 8y^2)dx + (4y - 6xy)dy$ where c is the bo	oundary of (7M)
		the region enclosed by the lines. $x = 0$ $y = 0$ $x + y = 1$.	
		Unit - II	
3	a)	Find $L\left\{\frac{\sin^2 t}{t^2}\right\}$	(7M)
	b)	Using Laplace transform method, solve the following differential equation $(D^2 + D)x = 2$ if $x(0) = 3$, $x'(0) = 1$, $x''(0) = -2$	on (7M)
		Or	
4	a)	Find Laplace transform of unit impulse function or Dirac delta function	(7M)
	b)	Find inverse Laplace transform of $\left\{\frac{1}{(s-2)(s+2)^2}\right\}$ using convolution theorem	rem. (7M)
		Unit - III	
5	a)	Find the Fourier series of $f(x) = x + x^2$ in $(-\pi, \pi)$	(7M)
	b)	If $F(p)$ is the complex Fourier transform of $f(x)$, then prove that the comp	plex Fourier (7M)
		transform of f(x) cos ax is $\frac{1}{2} [F(p+a) + F(p-a)]$	
		Or	
6	a)	Find the Half range sine series of $f(x) = \begin{cases} \frac{1}{4} - x & 0 < x < \frac{1}{2} \\ x - \frac{3}{4} & \frac{1}{2} < x < 1 \end{cases}$	(7M)
	b)	Find the Fourier sine transform of the function $f(x) = x$	(7M)

|"|"||||"|"||||

Code No: R	201206
------------	--------

SET - 2

Unit - IV

7	a)	Find the partial differential equation by eliminating arbitrary constants a & b from	(7M)
		$z = a \log\left[\frac{b(y-1)}{1-x}\right]$	
	b)	Solve the PDE $q = px + p^2$	(7M)

()r
	~

8	a)	Find the partial differential equation by eliminating arbitrary functions from	(7M)
		z = f(2x+3y) + yg(2x+3y)	

b) Solve the PDE (x + 2z)p + (4z - y)q = 2x + y (7M)

Unit - V

- 9 a) Solve the partial differential equations $(D^3 D^{1^3})z = x^3y^3$ (7M)
 - b) Find the temperature u(x, t) in a homogenous bar of heat conducting method of (7M) length '*l*' whose ends are kept at 0° c and whose initial temperature is $\frac{ax}{l^2}(l-x)$

Or

10 a) Solve the partial differential equations $(D^3 - 4D^2D^1 + 4DD^{1^2})z = 2\sin(3x + 2y)$ (7M)

b) Solve the PDE $\frac{\partial u}{\partial x} = 2\frac{\partial u}{\partial t} + u$, where $u(x, 0) = 6e^{-3x}$ by the method of variation of parameters. (7M)

2 of 2

R20

SET - 3

I B. Tech II Semester Regular/Supplementary Examinations, August- 2022 MATHEMATICS-III

(Only EEE)

Tin	Max. Mark	ks: 70
	Answer any five Questions one Question from Each Unit All Questions Carry Equal Marks	
	Unit - I	~ ~ ~ ~ ~ ~
a)	In what direction from the point $(1,-2,-1)$ the directional derivative of	(7M)
	$\phi = x^2 yz + 4xz^2$ is maximum? What is the magnitude of this maximum?	
b)	Evaluate $\int \overline{F} \cdot \hat{n} ds$ where $\overline{F} = z\overline{i} + x\overline{j} - 3y^2 z \overline{k}$ and 's' is the surface of the cylinder $x^2 + y^2$	(7M)
	= 1 in the first octant between $z = 0$ and $z = 2$. Or	
a)	Show that the vector $(x^2 - yz)\overline{i} + (y^2 - zx)\overline{j} + (z^2 - xy)\overline{k}$ is irrotational and find its	(7M)
	scalar potential.	
))	If V is the first octant bounded by $y^2 + z^2 = 9$ and the plane $x = 2$ and $\overline{F} =$	(7M)
	$2x^2 y\overline{i} - y^2 \overline{j} + 4xz^2 \overline{k}$ Then Evaluate $\iint_{s} \overline{F} \cdot \overline{n} ds$ using Gauss-divergence theorem	
	Unit - II	
a)	Find the inverse Laplace transform of $\frac{s^3-3s^2+6s-4}{(s^2-s^2)^2}$	(7M)
`	$(s^2-2s+2)^2$	
D)	Evaluate $\int_0^t e^t \sin 3t dt$ using Laplace transform method	(/M)
	Or	
ı)	Find $L\left\{\frac{\cos 4t \sin 2t}{2}\right\}$	(7M)
b)	Find $L^{-1}\left\{\frac{1}{2}\log\left[\frac{s+1}{s}\right]\right\}$	(7M)
	Unit - III	
a)	Find the Fourier series of $f(x) = 4 - x^2$ in $-2 < x < 2$	(7M)
n)		(7M)
-)	Using Fourier cosine integral, show that $\frac{\pi}{2}e^{-x} = \int_{0}^{\infty} \frac{\cos \lambda x}{\lambda^2 + 1} d\lambda$	(111)
	Or	
a)	((7M)
a)	$x \qquad 0 < x < \frac{\pi}{2}$	(7141)
	Find the Half range sine of $f(x) = \begin{cases} z \\ (\pi - x) \\ z \\ \pi \\ -x $	
L)		
נט)	Find the Fourier transform of $f(x) = \begin{cases} a^2 - x^2 & \text{if } x < a \end{cases}$	(/WI)
	$\begin{bmatrix} 0 & if x > a \end{bmatrix}$	
	1 of 2	

Unit - IV

7 a) Solve the PDE
$$(y^2 - z^2)p + y(z^2 - x^2)q = z(x^2 - y^2)$$
 (7M)

b) Find the partial differential equation by eliminating arbitrary function from (7M)

$$f(x^2 + y^2, x^2 - z^2) = 0$$

Or

8 a) Solve the PDE $\frac{p^2}{z^2} = 1 - pq$ (7M)

b) Find the partial differential equation by eliminating arbitrary constants a & b from (7M) $z = xy + y\sqrt{x+a} + b$

Unit - V

9 a) Solve the partial differential equations
$$(D^2 + DD^1 - 6D^{1^2})z = x + y$$
 (7M)

b) Solve the PDE
$$4\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} = 3z$$
 and $z(0, y) = e^{-5y}$ by the method of variation of parameters. (7M)

or
10 a) Or
Solve the wave equation
$$\frac{\partial^2 y}{\partial x^2} = c^2 \frac{\partial^2 y}{\partial t^2}$$
(7M)
Subject to
(i) $y(0,t) = 0$
(ii) $y(\pi,t) = 0$
(iii) $y(x,0) = x, 0 \le x \le \pi$
(iv) $\frac{\partial y}{\partial t}(x,0) = 0, 0 \le x \le \pi$
b) Solve the partial differential equations $(D^3 - 3D^2D^1 + 4D^{1^3})z = e^{x+2y}$
(7M)

2 of 2

|"|"|||"|"||||

(**R20**

SET - 4

I B. Tech II Semester Regular/Supplementary Examinations, August - 2022 MATHEMATICS-III

(Only EEE)

3 hours Max. Mark	s: 70
Answer any five Questions one Question from Each Unit All Questions Carry Equal Marks	
Unit - I	
Find the directional derivative of $\phi = x^2 yz + 4xz^2$ in the directional of $2\overline{i} - \overline{j} - 2\overline{k}$ at	(7M
(1, -2, -1)	
Evaluate $\int_{V} \overline{f} dv = xz\overline{i} + 2x\overline{j} - y^2\overline{k}$ over the volume bounded by $x = 0, y = 0, z = x^2$;	(7M
z = 2, x = 2.	
Or	
Find $curl \overline{f}$ for $\overline{f} = grad \left(x^3 + y^3 + z^3 - 3xyz\right)$	(7M
Verify the Divergence theorem for $\overline{F} = 4xy \overline{i} - y^2 \overline{j} + xz \overline{k}$ over the cube bounded by x	(7M
= 0, x = 1, y = 0, y = 1, z = 0 and z = 1.	
Unit - II	
$ (e^{at}-cos5t)$	(7M
Find $L\left\{\frac{t}{t}\right\}$	(7101
Find the inverse Laplace transform of $\frac{1+2s}{2}$	(7M
$(s+2)^2(s-1)^2$ Or	
$\sum_{t=1}^{t} \int_{t} \int_{t$	(7M
Evaluate $\int_0^{\infty} \int_0^{\infty} \int_0^{\infty} \frac{1}{2} e^{itt^2} dt dt dt$ using Laplace transform method	(/101
Using Laplace transform method, solve the following differential equation	(7M
$(D^4 - k^4)y = 0$ if $y(0) = 1, y'(0) = 0, y''(0) = 0, y'''(0) = 0$	
Unit - III	
πx	(7M
Find the Half range cosine series of $f(x) = \frac{\pi}{8}(\pi - x)$ in $[0,\pi]$	
$(1 if 0 < r < \pi$	(7M
Express the $f(x) = \begin{cases} 1 & i \neq 0 < x < \pi \\ 0 & i \neq x > \pi \end{cases}$ as a Fourier sine integral	(,
Or	
$\pi x 0 < x < 1$	(7M
Find the Fourier series of $f(x) = \begin{cases} 0 & 1 < x < 2 \end{cases}$	
(sin av if v < a	(7M
$f(x) = \begin{cases} \sin ax & ij x < a \\ 0 & if x > a \end{cases}$	(1141
Find the Fourier Cosine transform of the function $\int_{0}^{0} \frac{1}{y^{2}} \frac{1}{x > u}$	
	Answer any five Questions one Question from Each Unit All Questions Carry Equal Marks Unit - I Find the directional derivative of $\phi = x^2yz + 4xz^2$ in the directional of $2\hat{l} - \hat{j} - 2\hat{k}$ at $(1, -2, -1)$ Evaluate $\int_{\hat{v}}^{\hat{l}} dv = xz\hat{l} + 2x\hat{y} - y^3\hat{k}$ over the volume bounded by $x = 0, y = 0, z = x^2$; z = 2, x = 2. Or Find $curl \hat{f}$ for $\hat{f} = grad(x^3 + y^3 + z^3 - 3xyz)$ Verify the Divergence theorem for $\hat{r} = 4xy\hat{l} - y^3\hat{l} + xz\hat{k}$ over the cube bounded by $x = 0, y = 1, z = 0$ and $z = 1$. Unit - II Find the inverse Laplace transform of $\frac{1+2x}{(x+2)^2(x-1)^2}$ Or Evaluate $\int_0^t \int_0^t \int_0^t \frac{1}{z}e^{3t}t^2 dt dt dt$ using Laplace transform method Using Laplace transform method, solve the following differential equation $(D^4 - k^4)y = 0$ if $y(0) = 1, y'(0) = 0, y''(0) = 0, y'''(0) = 0$ Unit - III Find the Half range cosine series of $f(x) = \frac{\pi x}{8}(\pi - x)$ in $[0,\pi]$ Express the $f(x) = \begin{cases} 1 & if 0 < x < \pi \\ 0 & if x > \pi \end{cases}$ as a Fourier sine integral $f(x) = \begin{cases} \sin ax & if x < a \\ 0 & if x > a \end{cases}$ Find the Fourier Cosine transform of the function $f(x) = \begin{cases} \sin ax & if x < a \\ 0 & if x > a \end{cases}$

1 of 2

|"|"||||"|"||||

b)

Unit - IV

7 a) Find the partial differential equation by eliminating arbitrary function from (7M) $f(x^2 + y^2 + z^2, z^2 - 2xy) = 0$

b) Solve the PDE
$$x(y-z)p + y(z-x)q = z(x-y)$$
 (7M)
Or

8 a) Find the partial differential equation by eliminating arbitrary constants a, b & c (7M) from $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$

Solve the PDE
$$p^2 + pq = z^2$$
 (7M)
Unit - V

9 a) Solve the following boundary valve problem
$$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$$
 with (7M)

(i)
$$\frac{\partial u}{\partial x}(0,t) = 0$$

(ii)
$$\frac{\partial u}{\partial x}(l,t) = 0$$

(ii)
$$u(x,0) = x \quad 0 \le x \le l$$

b) Solve the partial differential equations $(D^2 - 7DD^1 + 12D^{1^2})z = e^{x-y}$ (7M) Or

10 a) Solve the partial differential equations
$$(D^2 - DD^1)z = \sin x \cos 2y$$
 (7M)

b) Solve the PDE $\frac{\partial u}{\partial x} + 4 \frac{\partial u}{\partial y} = 0$ and $u(0, y) = 8e^{-3y}$ by the method of variation of parameters. (7M)

2 of 2