

I B. Tech I Semester Supplementary Examinations, May/June - 2019 MATHEMATICS-II (MM)

(Com. to CSE, IT, Agri E)

Time: 3 hours			Max. Marks: 70	
		 Note: 1. Question paper consists of two parts (Part-A and Part-B) 2. Answering the question in Part-A is Compulsory 3. Answer any FOUR Questions from Part-B 		
 <u>PART –A</u>				
1.	a)	Give an example for Transcendental equation	(2M)	
	b)	Prove that $\nabla = 1 - E^{-1}$	(2M)	
	c)	Find y(0.1) By Euler's method Given that $\frac{dy}{dx} = x + y^2$, y(0) = 1	(2M)	
	d)	Find half range sine series of $f(x) = \frac{x}{2}$ in $[0, \pi]$	(2M)	
	e)	Find the inverse Fourier finite sine transform of $f(x)$ if	(2M)	
		$F_{s}(n) = \frac{\cos\left(\frac{2n\pi}{3}\right)}{(2n+1)^{3}} in \ (0,1)$		
		$\begin{bmatrix} 1 & if \ 0 < x < 1 \end{bmatrix}$		
	f)	Find the Fourier transform of $f(x) = \begin{cases} 1 & \text{if } 0 < x < 1 \\ -1 & \text{if } 1 < x < 2 \\ 0 & \text{if } x > 2 \end{cases}$	(2M)	
	`			
	g)	Define one dimension wave equation.	(2M)	
		<u>PART -B</u>		
2.	a)	Find the root of the equation $x^3 - x - 4 = 0$ using Bisection method.	(7M)	
	b)	Find the root of the equation $xe^{x} = 3$ using Newton Raphson method.	(7M)	
3.	a)	Given that $\sin 45^{\circ} = 0.7077$, $\sin 50^{\circ} = 0.766$, $\sin 55^{\circ} = 0.8192$, $\sin 60^{\circ} = 0.866$ find $\sin 55^{\circ}$ using Newton's forward difference formula.	(7M)	
	b)	Using Lagrange's formula find y(8) from the following table.	(7M)	
		X 0 2 5 6 10 15		
		X 7 11 14 10 24 22		

4. a) Evaluate $\int_{0}^{2} \frac{dx}{\sqrt{1+x^2}}$ by (i) Simpson's 1/3rd rule (iii) Simpson's 3/8th Rule. (7M)

24

11 14

Y

7

18

b) Solve $\frac{dy}{dx} = xy^2$ using Modified Euler's method for x=1.2 given y (1)=1. (7M)

32

5. a) Find the Fourier series for $f(x) = \begin{cases} x, & \frac{-\pi}{2} < x < \frac{\pi}{2} \\ 0, & \frac{\pi}{2} < x < \frac{3\pi}{2} \end{cases}$ (7M)

Hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \ldots = \frac{\pi^2}{8}$

- b) Find the half range cosine series of $f(x) = \begin{cases} 0 & -5 < x < 0 \\ 3 & 0 < x < 5 \end{cases}$ (7M)
- 6. a) Find the Finite Fourier cosine transform of f(x) defined by (7M) $f(x) = \begin{cases} x & 0 < x < \frac{\pi}{2} \\ \pi - x & \frac{\pi}{2} < x < \pi \end{cases}$
 - b) Do the Fourier sine and cosine transform exist for e^x (7M)

7. a) Solve the PDE
$$\frac{\partial u}{\partial x} - 2\frac{\partial u}{\partial y} = u$$
 and $u(x,0) = 3e^{-5x} + 2e^{-3x}$ (7M)

b)
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$
 (7M)
(*i*) $u(0, y) = 0$ for all y
(*ii*) $u(a, y) = 0$ for all y
(*iii*) $u(x, \infty) = 0$, $0 \le x \le a$
(*iv*) $u(x, 0) = kx$, $0 \le x \le a$