

I B. Tech II Semester Regular/Supplementary Examinations, August-2022 MATHEMATICS-II

		(Com. to All Branches)	
1	Time:	A 3 hours Max. Ma	urks: 70
•		Answer any five Questions one Question from Each Unit All Questions Carry Equal Marks	~~~~~
1.	a)	Unit-I Find the Eigen values and Eigen vectors of $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$	(7M)
	b)	Solve the system of equations $x + 3y - 5z = 0, 3x - y + 5z = 0, 3x + 2y - z = 0$ Or	(7M)
2.	a)	Find the values of 'a' and 'b' such that the system of equation $2x + 3y + 5z =$ 9,7x + 3y - 2z = 8,2x + 3y + az = b have(i) No solution (ii) A unique solution (iii) Infinite number solutions.	(7M)
	b)	Prove that the Eigen values of $BA^{-1} \& A^{-1}B$ are same.	(7M)
		Unit-II	
3.	a)	Verify Cayley Hamilton theorem for A = $\begin{bmatrix} 8 & -8 & 2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{bmatrix}$ and hence find A ⁻¹	(7M)
	b)	Reduce the quadratic form in to sum of squares of terms using diagonalization method $3x^2 + 5y^2 + 3z^2 - 2yz + 2zx - 2xy$	(7M)
		Or	
4.	a)	Find the singular value decomposition of $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$	(7M)
	b)	Diagonalize the matrix $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$	(7M)
5.	a)	Unit-III Find the real root of the equation $2x = 3sinx + 5$ using Bisection method	(7M)
	b)	Find the real root of the equation $xsinx = 1$ using Iteration method	(7M)
		Or	
6.	a)	Find the real root of the equation $2x = 3sinx + 5$ using False position method	(7M)

b) Evaluate $\sqrt[3]{24}$ using Newton -Raphson method (7M)

|"|"|||"|"||||

Unit-IV

7. a) Find y(21) using Newton's forward formula for the following table (7M)

X	20	25	30	35	40	45
У	354	332	291	260	231	204

b)	Using Lagra	nge's formu	(7M	I)			
	Х	-1	0	2	3		
	v	-8	3	1	2		

Or

8. a) Using Newton's divided difference formula evaluate f (x) from the following data (7M)

Х	0	1	3	4
у	-12	0	6	12

b) Find the missing terms in the following data.

0 2 3 4 5 6 1 Х 200 220 260 350 430 у --

Unit-V

9. a) Find y(0.2) by Picard's method given that $\frac{dy}{dx} = x - y$, y(0) = 1 (7M)

b) Evaluate y (0.1) by Euler's method for $\frac{dy}{dx} = \frac{x+y}{y-x}$, y(0) = 1. For h = 0.1 (7M) Or

10 a) By RK method of Fourth order find y (0.2) given that
$$\frac{dy}{dx} = y^2 - x$$
, $y(0) = 1$ (7M)

b) Evaluate
$$\int_0^1 \frac{x^p}{1+x^3} dx$$
 by taking p =1 using Simpson's 3/8th rule (7M)

2 of 2

|"|"|||"|""|||'|

(7M)

Code No: R19BS1202

SET - 1

I B. Tech II Semester Supplementary Examinations, August- 2022 MATHEMATICS-II (Com. to EEE, ECE, CSE, EIE, IT)

Time: 3 hours

Max. Marks: 75

Answer any five Questions one Question from Each Unit All Questions Carry Equal Marks

UNIT III

5. b) Find the Real root of the equation $x^3-6x - 4 = 0$ by false position method. (7M)

I B. Tech II Semester Regular/Supplementary Examinations, August -2022 MATHEMATICS-II

	Time	(Com. to All Branches) 3 hours Max Max	·ks· 70
	1 mic	Answer any five Questions one Question from Each Unit	K3. 70
		All Questions Carry Equal Marks	
		Unit-I	
1.	a)	Find the values of 'a' and 'b' such that the system of equation $x + y + z = 6$, $x + 2y + 3z = 10$, $x + 2y + az = b$ have (i) No solution (ii) A unique solution (iii) Infinite number solutions.	(7M)
	b)	Solve the equations $2x - 6y + 8z = 24,5x + 4y - 3z = 2,3x + y + 2z = 16$. by Gauss-Elimination method	(7M)
		Or	
2.	a)	Find the Eigen values and Eigen vectors of $A = \begin{bmatrix} -3 & -7 & -5 \\ 2 & 4 & 3 \\ 1 & 2 & 2 \end{bmatrix}$	(7M)
	b)	$\begin{bmatrix} 1 & 4 & 3 & -2 & 1 \end{bmatrix}$	(7M)
		Find the rank of $\begin{bmatrix} -2 & -3 & -1 & 4 & 3 \\ -1 & 6 & 7 & 2 & 9 \\ -3 & 3 & 6 & 6 & 12 \end{bmatrix}$ using Echelon form.	
		Unit-II	
3.	a)		(7M)
		Verify Cayley Hamilton theorem for A = $\begin{bmatrix} 3 & 1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ and hence find A ⁴	
	b)	Reduce the quadratic form in to sum of squares of terms using orthogonal diagonalization $7x^2 + 7y^2 + 6xy$	(7M)
		Or	
4.	a)	Find the singular value decomposition of $A = \begin{bmatrix} -105 & 92 \\ -76 & -18 \end{bmatrix}$	(7M)
	b)	Diagonalize the matrix $A = \begin{bmatrix} 4 & 6 \\ 6 & -1 \end{bmatrix}$	(7M)
		Unit-III	
5.	a)	Find the real root of the equation $x^3 - x - 11 = 0$ using Bisection method	(7M)
	b)	Find the real root of the equation $x = \frac{1}{2} + sinx$ using Iteration method	(7M)
		Or	
6.	a)	Find the real root of the equation $2x - log x_{10} = 7$ using False position method	(7M)
	b)	Find the real root of the equation $2x = 3 + cosx$ using Newton -Raphson method	(7M)
		1 of 2	

|"|"|||"|"|||||

Code No: R201201

R20

SET - 2

Unit-IV

Find	y(46) u	sing N	ewton'	s Back	word for	mula fo	r the fol	lowi	ng tabl	e	
X	20	25	30	35	40	45					
У	354	332	291	260	231	204					
Usin	g Lagra	nge's t	formula	ı find f ((3) from t	he follo	wing da	ita			
Х	000	0		1	4		5				
у		4		3	24		39				
					(Dr					
Prov	e that Λ	$= E \nabla$ =	$= \nabla E =$	$\delta E^{1/2}$							
1101		2,	1	011							
Usin	g Newt	on's di	vided d	lifferenc	e formul	a find f	$\frac{1}{2}$ (x) from	n the	follow	ing data	
X		-1 0		$\frac{0}{2}$	2		3				
У		-8		3	1		Z				
					Un	it-V					
Find	v(x) by	Picaro	l's met	hod give	en that $\frac{dy}{dy}$	x = x + x	v.v(0)	= 1			
1 1110	J(N) 0 J	1 Iour	. 5 11100	liou give	dx		,,,(,,	,	,		
By R	K meth	od of s	second	order fi	nd y(0.1)	, y(0.2)	given tł	hat $\frac{d}{d}$	$\frac{y}{x} = 1 - 1$	$2xy^2, y(0)$) = 1
					(Dr					
Eval	uate \int_{1}^{2}	$e^{-\frac{1}{2}}dx$	by tal	king n =	10 using	Trapezo	oidal rul	le			
By T	`aylor's	series	metho	d find y	(0.2) give	en that $\frac{a}{a}$	$\frac{dy}{dx} = 3x$	$+ y^{2}$,	y(0) =	1	
					2	of 2					

R20

I B. Tech II Semester Regular/ Supplementary Examinations, August -2022 MATHEMATICS-II

Tir	ne: 3 hours (Com. to All Branches) Max Mark	rs· 70
	Answer any five Questions one Question from Each Unit	
	All Questions Carry Equal Marks	~~~~
a)	Unit-I If the Eigen values of A are -1, 1, 3 then Find the Eigen values of $(i)AdjA$ $(ii)A - 3I$ $(iii)A^3$	(7M
b)	Find the rank of $\begin{bmatrix} 2 & -4 & 3 & -1 & 0 \\ 1 & -2 & -1 & -4 & 2 \\ 0 & 1 & -1 & 3 & 1 \\ 4 & -7 & 4 & -4 & 5 \end{bmatrix}$ using Echelon form.	(7M
a)	Test the consistency and solve the system of equations $5r + 3y + 7z = 4.3r + 26y + 100$	(7M
<i>a)</i>	2z = 9,7x + 2y + 10z = 5	(7141
b)	Prove that Eigen values of triangular matrix are it's diagonal elements.	(7M
	Unit-II	
a)	$\begin{bmatrix} 2 & 2 & 1 \end{bmatrix}$	(7M
	Verify Cayley Hamilton theorem for $A = \begin{bmatrix} 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$ and hence find A^4	
b)	Find the singular value decomposition of $A = \begin{bmatrix} 10 & -5 \\ 2 & -11 \\ 6 & 8 \end{bmatrix}$	(/M
	Or	
a)	Diagonalize the matrix $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$	(7M)
b)	Find the nature, index and signature of the quadratic form $2x^2 + 2y^2 + 2z^2 + 2yz$	(7M)
	Unit-III	
a)	Find the real root of the equation $x^4 - x - 10 = 0$ using Bisection method	(7M)
b)	Solve the following system of equations using Gauss-Seidel method 8x - 3y + 2z = 20,4x + 11y - z = 33,6x + 3y + 12z = 36	(7M
	Or	
a)	Find the real root of the equation $e^x tan x = 1$ using Iteration method	(7M
b)	Solve the following system of equations using Gauss-Jacobi method 10x + y + z = 12,2x + 10y + z = 13,2x + 2y + 10z = 14	(7M)

|"|"||||"|"||||

	Code No: R201201			R20			SET - 3		
					Unit-IV				
7	a)	Using Newt	on's divided	difference for	ormula evalu	ate f (15) fro	om the following data	(7M)	
		х	5	6	9	11			
		у	12	13	14	16			
	b)	Evaluate (i)	$\Delta(x+2) (i$	i)∆²cos2x	by taking h =	= 1		(7M)	
					Or				
8	a)	Using Lagra	inge's formi	ula find f (4)	from the fol	lowing data		(7M)	
		х	1	2	2.5	3			
		У	-6	-1	5	16			

b) Find the number of students whose weight is between 60 and 70 from the following (7M) data

Weight	0-40	40-60	60-80	80-100	100-120
N0.of	250	120	100	70	50
students					

Unit-V

9 a) Find y(0.2),y(0.4) by Taylor's method given that $\frac{dy}{dx} = x - y^2$, y(0) = 1 (7M)

b) Evaluate y(0.1), y(0.2) by RK method second order given (7M) $\frac{dy}{dx} = \frac{1}{2} (1+x)y^2, y(0) = 1.$ Or

10 a) Evaluate $\int_0^6 \frac{e^x}{1+x} dx$ by taking n =6 using Simpson's 3/8th rule (7M)

b) by RK method 4th order formula find y(0.1) given that $\frac{dy}{dx} = x^2 - y^2$, y(0) = 1 (7M)

2 of 2

SET - 4

I B. Tech II Semester Regular/ Supplementary Examinations, August -2022 MATHEMATICS-II

т.	(Com. to All Branches)	70
Tin	Max. Marl	ks: 70
	Answer any five Questions one Question from Each Unit All Questions Carry Equal Marks	
	Unit-I	~~~~~
a)	If the Eigen values of A are 1,2, 3 then Find	(7M)
	(i)detA (ii) Trace of A (iii) Eigen values of $A^3 - 5A + 6I$	
b)	Solve the system of equations using Gauss-Elimination method: $x - 3y + 7z =$	(7M)
	2,2x + 4y - 3z = -1, -3x + 7y + 2z = 3.	
2)	\mathbf{Or}	(7M)
a) b)	Solve the system of equations $5x + 6y + 2z = 0, 2x + y + 5z = 0, 5x - y + z = 0$	$(7\mathbf{M})$
0)	$\begin{bmatrix} 2 & -2 & 0 & 6 \\ 4 & 2 & 0 & 2 \end{bmatrix}$	(711)
	Find the rank of the matrix $A = \begin{bmatrix} 4 & 2 & 0 & 2 \\ 1 & 1 & 0 & 3 \end{bmatrix}$ by reducing it to the normal form	
	$\begin{vmatrix} 1 & -1 & 0 & 3 \\ 1 & -2 & 1 & 2 \end{vmatrix}$	
a)		(7M)
<i>a)</i>	Diagonalize the matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 3 \end{bmatrix}$	(7101)
b)	Find the nature, index and signature of the quadratic form $2x^2 + 2y^2 + 2z^2 + 2yz + 2yz$	(7M)
	2zx	
a)		(714)
a)	Find the singular value decomposition of $A = \begin{bmatrix} 0 & 0 \\ 16 & 12 \end{bmatrix}$	(711)
	l16 12]	
b)	$\begin{bmatrix} 1 & -2 & 4 \end{bmatrix}$	(7M)
	Verify Cayley Hamilton theorem for $A = \begin{bmatrix} 0 & -1 & 2 \\ 2 & 0 & 2 \end{bmatrix}$ and hence find A^{-1}	
	Unit-III	
,		
a)	Solve the following system of equations using Gauss-Seidel method 10x + y + z = 12.2x + 10y + z = 13.2x + 2y + 10z = 14	(/M)
	10x + y + 2 = 12,2x + 10y + 2 = 13,2x + 2y + 102 = 11	
b)	Find the real root of the equation $x = \cos x$ using Newton -Raphson method	(7M)
	Or	
a)	Find the real root of the equation $xlogx_{10} = 1.2$ using False position method	(7M)
b)	Solve the following system of equations using Gauss-Jacobi method	(7M)
,	8x - 3y + 2z = 20,4x + 11y - z = 33,6x + 3y + 12z = 36	. /

Unit-IV

7.	a)	Evaluate (i) $\Delta \tan^{-1}(x)$	(ii) $\Delta^2 e^{2x}$ by taking h = 1	(7M)

b) Compute the value at y(2.5) from the following data using Lagrange's interpolation (7M) formula.

Х	1	2	3	4
у	1	8	27	64

Or

8. a) Find the number of people whose deaths between the age 50 and 55 from the (7M) following data

people	25-35	35-45	45-55	55-65
N0.of deaths	13229	18139	24225	31496

b) Using Newton's divided difference formula evaluate f (140) from the following data (7M)

Х	110	130	160	190
У	10.8	8.1	5.5	4.8

Unit-V

9. a) Evaluate
$$\int_{1}^{2} \frac{dx}{x}$$
 by taking n =10 using Simpson's 1/3rd rule (7M)

b) By Runge kutta method of second order find y(0.2) given that $\frac{dy}{dx} = 2xy^2$, y(0) = 1 (7M)

Or

10 a) By Runge kutta method of Fourth order find y(0.1) given that $\frac{dy}{dx} = \frac{y-x}{x+y}$, y(0) = 1 (7M)

b) Find y(1) by Euler's method given that
$$\frac{dy}{dx} = \frac{x^2}{1+y^2}y(0) = 1$$
 by taking h = 0.1 (7M)

2 of 2

|"|"|||"|"||||