SET - 1 Code No: R2031423

III B. Tech I Semester Regular Examinations, Dec/Jan -2022-23 MACHINE LEARNING

CSE(AIML), CSE(AI), CSE(DS), CSE(AIDS), AIDS, AIML

Time: 3 hours Max. Marks: 70

		Answer any FIVE Questions ONE Question from Each unit			
		All Questions Carry Equal Marks *****			
UNIT-I					
1.	a)	What is deep learning? How does it work?	[7M]		
	b)	Explain about polynomial regression model.	[7M]		
_		(OR)			
2.	a)	Define artificial intelligence. Describe methods and goals in AI.	[7M]		
	b)	Describe sampling distribution of an estimator.	[7M]		
0	,	<u>UNIT-II</u>	[27.6]		
3.	a)	How would you make a prediction using a Logistics Regression model?	[7M]		
	b)	Explain about linear regression in detail.	[7M]		
		(OR)			
4.	a)	Describe generalized linear models.	[7M]		
	b)	Illustrate top down construction of decision trees.	[7M]		
		<u>UNIT-III</u>			
5.	a)	Define ensemble learning. Write about random forests.	[7M]		
	b)	Why Gaussian Kernel is used in SVM? What is the maximum possible value of RBF Gaussian kernel used in SVM?	[7M]		
		(OR)			
6.	a)	Distinguish between boosting and bagging.	[7M]		
	b)	Compare and contrast linear and nonlinear SVM. UNIT-IV	[7M]		
7.	a)	What are limitations of k-means? Explain.	[7M]		
	b)	Describe the process of selecting a Kernel and Tuning Hyper parameters.	[7M]		
		(OR)			
8.	a)	Explain about anomaly detection using Gaussian Mixtures.	[7M]		
	b)	Describe the mechanisms present in Scikit learn for dimensionality reduction .	[7M]		
_		<u>UNIT-V</u>			
9.	۵)	Explain the following:	[/7][/[]		
	a) b)	Visualization Using Tensor Board Regression MLPs	[7M] [7M]		
	D)	(OR)	[7141]		
10.		Explain the following:			
	a)	Logical Computations with Neurons.	[7M]		
	b)	Building Dynamic Models Using the Sub classing API. 1 of 1	[7M]		
		1 01 1			

SET - 2

Code No: R2031423

III B. Tech I Semester Regular Examinations, Dec/Jan -2022-23 MACHINE LEARNING

CSE(AIML), CSE(AI), CSE(DS), CSE(AIDS), AIDS, AIML

Time: 3 hours Max. Marks: 70

Answer any **FIVE** Questions **ONE** Question from **Each unit** All Questions Carry Equal Marks

UNIT-I What is machine learning? Why it is important? 1. [7M] Discuss in detail about in-sample risk with suitable examples. [7M] 2. What are the two main problem classes of Statistical Supervised [7M] learning? Explain them. What are tradeoffs in statistical learning? Explain. b) [7M] UNIT-II 3. Discuss about multiclass classification. [7M]Describe k-nearest neighbors classification with an example. [7M] (OR) 4. List out the critical assumptions of liner regression. Give the [7M] formulas to find RMSE and MSE. What are distance based methods in supervised learning? [7M] Explain. 5. Explain about bagging and pasting in detail. [7M] b) Describe computational complexity of nonlinear SVM classifiers. [7M] (OR) 6. Where does the gradient appear in gradient boosting? How does a) [7M] gradient boosting algorithm work? Explain about soft margin classification. b) [7M] UNIT-IV 7. Define clustering. Explain in detail k-means algorithm along [14 with its merits and demerits. M(OR) Describe the curse of dimensionality. What are main approaches 8. [14 for dimensionality reduction? Explain them. M**UNIT-V** 9. Explain the following: Classification MLPs [7M] Building a Regression MLP using the Sequential API [7M] (OR) 10. Explain the following: Biological Neurons Vs Artificial neuron a) [7M] Steps in installation of Tensor Flow [7M]

1 of 1

SET - 3 R20 Code No: R2031423

III B. Tech I Semester Regular Examinations, Dec/Jan -2022-23 MACHINE LEARNING

(CSE(AIML), CSE(AI), CSE(DS), CSE(AIDS), AIDS, AIML

Time: 3 hours Max. Marks: 70

Answer any FIVE Questions ONE Question from Each unit All Questions Carry Equal Marks *****

1.	a) b)	Explain about over fitting the training data in detail. Define unsupervised learning. Compare it with supervised learning.	[7M] [7M]
2.	a)	(OR) Distinguish between machine learning and deep learning.	[7M]
۷.	b)	What cross-validation? Explain about k-fold cross-validation.	[7M]
	D)	UNIT-II	[7141]
3.	a)	Explain about the CART training algorithm.	[7M]
	b)	What is the basic principle of SVM? Why SVM gives better accuracy?	[7M]
		(OR)	
4.	a)	Describe Naïve Bayes theorem with an example.	[7M]
	b)	Explain decision boundaries in logistic regression.	[7M]
_	,	<u>UNIT-III</u>	(m. c)
5.	a)	Describe the importance of stacking with an example.	[7M]
	b)	Explain about SVM linear classification.	[7M]
_		(OR)	
6.	a)	"SVM is only directly applicable for binary classification problem". Justify.	[7M]
	b)	Explain about Naïve Bayes classifiers. UNIT-IV	[7M]
7.	a) b)	Describe randomized PCA and incremental PCA. Explain about DBSCAN algorithm.	[7M] [7M]
8.	a)	(OR) What is PCA? Explain about principal components.	[7M]
٠.	b)	Describe usage of clustering for image processing.	[7M]
	D)	UNIT-V	[7141]
9.		Describe building an Image Classifier Using the Sequential API in detail.	[14M]
10.		(OR) Explain about loading and preprocessing data with Tensor	[14M]
10.		Flow.	[1 11/1]

Code No: R2031423 (**R20**) (SET - 4

III B. Tech I Semester Regular Examinations, Dec/Jan -2022-23 MACHINE LEARNING

CSE(AIML), CSE(AI), CSE(DS), CSE(AIDS), AIDS, AIML

Time: 3 hours Max. Marks: 70

Answer any FIVE Questions ONE Question from Each unit All Questions Carry Equal Marks UNIT-I 1. What are challenges of artificial intelligence? Explain. [7M] b) Give the role of training and testing data in learning [7M] (OR) 2. Distinguish between Instance-Based and Model-Based Learning a) [7M] Explain about empirical risk minimization. [7M] b) UNIT-II 3. Discus about Stochastic Gradient Descent in detail. a) [7M] Explain about training a binary classifier. [7M] 4. Define decision tree. Explain about Training and Visualizing a a) [7M] Decision Tree. Compare linear regression with polynomial regression. b) [7M] 5. What is Boosting? Explain about AdaBoost in detail. [7M] a) How does soft margin affect classification in SVM? Explain. b) [7M] 6. Is voting classifier a ensemble technique? How does voting [7M] classifier works? What is SVM? Explain about SVM regression. b) [7M] **UNIT-IV** 7. Discuss about usage of clustering for semi-supervised learning, a) [7M] Describe main approaches for dimensionality reduction. b) [7M] (OR) 8. What are Bayesian Gaussian Mixture Models? Explain. a) [7M] b) Briefly discuss about PCA. Compare Randomized PCA with [7M] Kernel PCA. UNIT-V 9. Explain the following: Multi-Layer Perceptron and Back propagation [7M] Installing Tensor Flow 2 [7M] (OR) 10. Explain the following: The Perceptron and its applications. [7M] a) Building Complex Models using the Functional API. [7M]

1 of 1