Code No: R1922042

II B. Tech II Semester Regular Examinations, August/September - 2021 LINEAR CONTROL SYSTEMS

(Electronics Communication Engineering)

Tiı	ne: 3	B hours Max. Marks: 75	Aax. Marks: 75		
	Answer any FIVE Questions one Question from each unit All Questions carry Equal Marks				
1	a)	Classify the control system types and discuss elaborately on their characteristics, advantages and disadvantages.	[8M]		
	b)	How to describe the behavior of a system using State Variable Descriptions. Explain with an example.	[7M]		
		Or			
2	a)	Illustrate the differential equation of an electrical system and obtain the Transfer function of a Linear Time Invariant (LTI) system	[8M]		
	b)	Explain about numerical control systems.	[7M]		
3	a)	Derive the response of second order system with unit step response.	[7M]		
	b)	Obtain the overall transfer functions for the following signal flow graphs using mason's gain formula.	[8M]		
		$\begin{array}{c c} I & G_1 & G_2 & G_3 \\ \hline & & & \\ R^{(5)} & & -H_2 & C^{(5)} \end{array}$			

Or

-41

- 4 a) Describe the various characteristics of Synchrotransmitter and receiver? [6M]
 - b) DiscussMason'sgain formula. Obtain the overall [9M] transferfunctionC/Rfromthesignalflow graphshown.

- 5 a) Construct Rout array and determine the stability of the system whose [8M] characteristic equationiss⁶+2s⁵+8s⁴+12s³+20s²+16s+16=0.
 - b) Explain the procedure to draw root locus of a given transfer function. [7M]

Or

Code No: R1922042			
6	a)	Choosethevalueof'K'fortheopenlooptransferfunction	[10M]
	b)	$G(s) = \frac{\kappa}{(s+2)(s^2+4s+5)}$, $H(s) = 1$ For the system to be stable using R-H criteria. What are the disadvantages of Routh Criterion?	[5M]
7	a)	Given the open loop transfer function $G(s) = \frac{5}{(1+2S+S^2)(1+3S)}$. Sketch the Nyquistp lot and investigate the open loop and closed oop systems stability.	[10M]
	b)	List the advantages and limitations of Frequency response methods.	[5M]
		Or	
8	a)	Given the open loop transfer function with unity feedback as $G(S) = \frac{Ke^{-10S}}{S(2+s)(1+5S)}$. Draw the bode plot and determine the gain K for the gain cross over frequency to be 4rad/sec.	[8M]
	b)	Sketch the polar plot and discuss the stability of the system represented by $G(s)H(s) = \frac{K}{S(S+1)(S+5)}$.	[7M]
9	a)	State and explain the concepts of Controllability and Observability.	[5M]
	b)	A unity feedback system has an open loop transfer function $G(s) = \frac{K}{S(S+3)(S+10)}$. design a suitable lag compensator. Assume necessary data. Or	[10M]
10	a)	Given $G(s) = \frac{2}{S^2 + 5S + 6}$. Obtain the states pace model of the system in the diagonal canonical form	[8M]
	b)	State and prove the properties of STM(state transition matrix)	[7M]