

I B. Tech I Semester Supplementary Examinations, August/Sep-2022 MATHEMATICS-I

(Com. to All Branches)

Tir	ne: 3	B hours Max. Ma	<u>arks: 70</u>
		Answer any five Questions one Question from Each Unit	
		All Questions Carry Equal Marks	
		UNIT-I	~~~~~
1.	a)	Discuss the convergence of $\frac{x}{1.3} + \frac{x^2}{3.5} + \frac{x^3}{7.9} + \dots (x > 0).$	(7M)
	b)	Verify Lagrange's mean value theorem for $f(x) = x^3 - x^2 - 5x + 3$ in [0,4] and find the value of the constant.	(7M)
		Or	
2.	a)	Examine the convergence of $\frac{3}{5} - \frac{5}{7} + \frac{7}{10} - \frac{9}{13} + \dots$	(7M)
	b)	Find Taylor's series expansion of the $f(x, y) = \cos x$ about $x = \frac{\pi}{3}$ and hence find	(7M)
		the approximate value of cos 35°.	
		UNIT-II	
3.	a)	Solve $(1 - x^2)\frac{dy}{dx} + xy = y^3 \sin^{-1} x$.	(7M)
	b)	A bacterial culture, increases from 100 to 400grams in 10 hours. How much would be present after 3 hours?	(7M)
		Or	
4.	a)	Find the orthogonal trajectories of the following family of curves: $r^n = a^n \sin n\theta$.	(7M)
	b)	Solve $2xydy - (x^2 + y^2 + 1)dx = 0$.	(7M)
		UNIT-III	
5.	a)	Solve $(D^2 + 1) y = \sin x \sin 2x + e^x x^2$.	(7M)
	b)		(7M)
	0)	Solve $(x+3)^2 \frac{d^2 y}{dx^2} + (x+3)\frac{dy}{dx} + y = \sin(2\log(1+x)).$	(/101)
		Or	
6.	a)	Solve $(D^2 + 4)y = Sec2x$, by the method of Variation of parameters	(7M)
	b)	The charge $q(t)$ on the capacitor is given by the differential equation	(7M)
		$10\frac{d^2q}{dt^2} + 120\frac{dq}{dt} + 1000q = 17sin(2t).$	
		At initial time the current is zero and the charge on the capacitor is 0.0005 coulomb. Find the charge on the capacitor for t>0.	
		$u^2 = u^2$	(7M)

7. a) Prove that $u = \frac{x^2 - y^2}{x^2 + y^2}$, $v = \frac{2xy}{x^2 + y^2}$ are functionally dependent and find the relation between them. (7M)

|"|"|||"|"|||||

Code No: R201101

b) Find the minimum value of $x^2 + y^2 + z^2$ given x + y + z = 3a. (7M)

SET - 1

8. a) If
$$u = \sin^{-1}\left(\frac{x^2 + y^2}{x + y}\right)$$
 prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \tan u.$ (7M)

Or

R20

b) Expand $e^x \cos y$ by Taylor's theorem about the point $\left(1, \frac{\pi}{4}\right)$ up to the second (7M) degree terms.

UNIT-V

- 9. a) Evaluate $\iint r \, dr d\theta$ bounded by the inside cardioid $r = a(1 + \cos\theta)$ and outside (7M) the circle r = a.
 - b) Find the area lying between the circle $x^2 + y^2 = a^2$ and the plane x + y = a in (7M) the first quadrant

Or

- 10 a) Evaluate $\int_0^1 \int_x^{2-x} \frac{x}{y} dy dx$ by change of order of integration. (7M)
 - b) Using spherical polar coordinates, evaluate $\iiint xyz \, dx \, dy \, dz$ taken over the volume bounded by the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant. (7M)

2 of 2