

III B. Tech I Semester Supplementary Examinations, June/July-2022 INFORMATION THEORY & CODING

(Electronics and Communication Engineering)

Time: 3 hours

Max. Marks: 75

[8M]

[7M]

[8M]

Answer any **FIVE** Questions **ONE** Question from **Each unit** All Questions Carry Equal Marks

UNIT-I

- 1 a) Define coding efficiency. Derive the relation between coding [8M] efficiency and entropy.
 - b) A source emits independent sequence of symbols from an alphabet [7M] consisting of five symbols from an alphabet with probabilities 1/4, 1/8, 1/8, 3/16, 5/16 respectively. Find the Shannon code using Shannon encoding algorithm and compute the efficiency.

(OR)

- 2 a) What is information? Show that amount of information is equal to [8M] $-\log p(x_j)$?
 - b) A source produces six message with probabilities 1/4, 1/4, 1/8, [7M] 1/8, 1/8, 1/8. Obtain the information content of each message and the entropy.

<u>UNIT-II</u>

3 a) Derive the relation between mutual information and entropy.

- b) A Gaussian channel has bandwidth of 1MHz.
 - (i) Calculate the channel capacity if the signal power to noise spectral density ratio is 10^5 Hz.
 - (ii) Find the maximum information rate.

(OR)

- 4 a) Prove I(X;Y) = I(Y;X).
 - b) What is channel capacity and channel efficiency? Define [7M] redundancy.

UNIT-III

5. a) For a systematic (6, 3) linear block code, the parity matrix 'P' is [8M] given by P =

[1	0	1]
0	1	1
l_1	1	0

- (i) Construct table for code words.
- (ii) If the received bit pattern $R = [1 \ 0 \ 1 \ 1 \ 0 \ 0]$, determine the syndrome, correctable error pattern and corrected code vector for a single bit error.

|"|'||||"|"|||||

Code No: R193104A

·		
	D10	
	KT A	1

[8M]

	1 \		[
b) Justify		Justify	[7M]
		(i) For a 2 bit error detection $d_{min} = 2$	
		(ii) For a single bit error correction $d_{min}=3$	
		(OR)	
6.	a)	Explain the following terms with necessary equations	[8M]
		(i) Minimum distance	
		(ii) Syndrome	
		(iii) Generator matrix	
		(iv) Parity check matrix	
	b)	Compare coded systems and un-coded system.	[7M]
		UNIT-IV	
7.	a)	Design encoder for the $(7, \overline{4})$ binary cyclic code generated by	[8M]
		$g(x) = 1 + x + x^3$ and verify the operation using the message	
		vector {1 0 0 1}.	

b) Differentiate systematic and non-systematic cyclic codes. (i) [7M] Briefly explain cyclic hamming codes. (ii)

(OR)

- Write the decoding procedure for BCH codes. 8. a)
 - For the (7, 4) single error correcting cyclic code using generator b) [7M] polynomial $g(x) = 1 + x + x^3$. Find all code vectors in systematic form.

UNIT-V

- A convolution encoder has three flip flops, three modulo-2 adders 9. a) [8M] and an output multiplexer. The generator sequence of the encoder are as follows: g(1) = (1, 0, 1), g(2) = (1, 1, 0), g(3) = (1, 1, Draw theblock diagram of the Convolution encoder. Also find the convolution code for message sequence $m = \{1 \ 1 \ 0 \ 1 \ 0\}$.
 - What are convolutional codes? How are they different from block b) [7M] codes?

(OR)

- Give the Viterbi Algorithm's procedural steps with an example. 10. a) [8M]
 - If the input sequence is 1010, draw the code tree and specify the b) [7M] outputs at each state.

2 of 2

