

II B. Tech II Semester Regular Examinations, August/September - 2021 FORMAL LANGUAGES AND AUTOMATA THEORY

		(Computer Science and Engineering)	
Tin	ne: 3	hours Max. Marks: 75	
		Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks	_
1	a)	Why do we need to study automata theory and formal languages?	4M
	b)	Define NFA with \in - moves and give example.	4M
	c)	Depict the steps in converting an NFA with \in into NFA without \in with an example.	7M
		Or	
2	a)	Design a DFA L(M) = {w w ε {0, 1}*} and W is a string that does not contain consecutive 1's	8M
	b)	Convert the following Mealy machine into equivalent Moore machine. a/1 d_1 d_1 d_2 d_1 d_2 d_1 d_1 d_2 d_1 d_3 d_3 d_1 d_3 d_1 d_3 d_1 d_3 d_1 d_3 d_1 d_1 d_2 d_3 d_1 d_3 d_1 d_3 d_1 d_3 d_1 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_2 d_3 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_2 d_3 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_2 d_3 d_1 d_2 d_3 d_1 d_2 d_3 d_1 d_2 d_3 d_1 d_2 d_3 d_1 d_2 d_3 d_1 d_2 d_3 d_1 d_2 d_3 d_1 d_2 d_3 d_1 d_2 d_3 d_1 d_2 d_3 d_1 d_2 d_3 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_1 d_2 d_3 d_1 $d_$	7M
3	a)	b/1 Write the regular expression for the language L over $\sum = \{0, 1\}$ such that all the strings i) do not contain the substring 01. ii) should have at least one 0 and at least one 1.	8M
	b)	Construct a Regular expression corresponding to the following finite automata. $\rightarrow A$ a b	7M

Or

a, b

4 a)	Prove that the language $L = \{ a^{2n} b^{3n} a^n n \ge 0 \}$ is not regular.	10M
------	---	-----

- b) What is Chomsky hierarchy? explain with diagram. 5M
- 5 a) Consider the CFG with {S,A,B) as the non-terminal alphabet, {0,1) as the terminal alphabet, S as the start symbol and the following set of production rules S → A1B
 A → 0A / ∈
 B → 0B / 1B / ∈
 For the string w = 00101, find the Leftmost derivation, Rightmost derivation, and Parse Tree.
 - b) Show that language $L = \{WW | W \text{ belongs to } \{a, b\}^* \}$ is not context free. 10M

Or

|"|"|||"|""|||'|

R19

5M

6	a)	Define Context Free Grammar. State and Explain the closure properties of CFG.	5M
	b)	Consider the CFG with {S,A,B} as the non-terminal alphabet, {a,b, ε } as the terminal alphabet, S as the start symbol and the following set of production rules $S \rightarrow ASA \mid aB \mid b$ A $\rightarrow B$ B $\rightarrow b \mid \in$	10M
		Convert the given grammar into CNF	
7	a)	Describe the components of Push Down Automata.	5M
	b)	Construct a PDA from the following CFG. $G = (\{S, X\}, \{a, b\}, P, S)$ where the productions are given below. $S \rightarrow XS \mid \in$, $A \rightarrow aXb \mid Ab \mid ab$	10M
		Or	
8	a)	Design a PDA for accepting a language $\{a^nb^{2n} n \ge 1\}$.	10M
	b)	Is a push-down automaton with two stacks equivalent to a turning machine? Justify your answer with proper explanation.	5M
9	a)	Construct Turing machine for L = $\{a^nb^m a^{(n+m)} n,m \ge 1\}$	10M

b) Explain in brief about Church's Turing thesis.

Or

- 10 a) Describe the closure properties of recursive and recursively enumerable 8M langauges.
 - b) Explain the differences between NP complete and NP-hard problems. 7M