II B. Tech II Semester Regular Examinations, June/July - 2022

FORMAL LANGUAGES AND AUTOMATA THEORY
(Common to CSE, CST, CSE(AIML), CSE(AI), CSE(DS), CSE(AIDS), CSE(CS), CSE(IOTCSIBCT), CSE(IOT), AIDS, CS\& AIML)
Time: 3 hours
Max. Marks: 70

Answer any FIVE Questions each Question from each unit
All Questions carry Equal Marks
UNIT-I
1 a) Outline formal language and Explain the Chomsky classification of grammars.
b) Draw a DFA which accepts strings ending with 11 where the input is $\{0,1\}$

Or
2 a) List the various operations on languages in detail and relate with transition diagrams?
b) Draw a DFA which accepts strings ending with 01 where the input is $\{0,1\}$

UNIT-II

3
a) Compute the regular expression for the following machine.

b) List and explain the closure properties of Regular grammar.
$4 \quad$ a)
Or

Compute the regular expression for the above machine.
b)

Construct left and right linear grammar for the given NFA

UNIT-III

5 a) Convert the grammar into GNF

$$
\begin{aligned}
& S \rightarrow A B 1 \mid 0 \\
& A \rightarrow 00 A \mid B \\
& B \rightarrow|A| .
\end{aligned}
$$

b) Discuss the applications of Context free grammar. Illustrate ambiguous grammar.

Or

6 a) Convert the grammar into Greibach Normal Form.

$$
\begin{aligned}
& S \rightarrow A B \\
& A \rightarrow B S B \\
& A \rightarrow a \\
& B \rightarrow b
\end{aligned}
$$

b) Discuss the simplification of context free grammar. What is the importance of useless symbols and unit productions in it?

UNIT-IV

7 a) Explain the elements of PDA. Construct PDA for $L=\left\{0^{n} 1^{m} 2^{k}\right\}$ Where $n, m, k>=1$
b) Show the procedure and explain to find the equivalence of PDA and context free grammer.

Or

8 a) Outline the PDA with example. In what ways a PDA can show the acceptance of a string. Explain with example
b) Demonstrate the conversion of PDA to grammar with a case study.

9 a) Construct a TM that computes a function $\mathrm{f}(\mathrm{m}, \mathrm{n})=\mathrm{m}+$ ni.e, addition of two numbers.
b) Construct a TM for computing ones complement calculation.

Or

10 a) Discuss the languages accepted by Turing machines.
b) Construct the Turing machine that computes subtraction, where the fist operand length is more than the second operand. X is a symbol that separates the two operands.
Example: 0000X00.

II B. Tech II Semester Regular Examinations, June/July - 2022

FORMAL LANGUAGES AND AUTOMATA THEORY
(Common to CSE, CST, CSE(AIML), CSE(AI), CSE(DS), CSE(AIDS), CSE(CS), CSE(IOTCSIBCT), CSE(IOT), AIDS, CS \& AIML)
Time: 3 hours
Max. Marks: 70

Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks

UNIT-I

1 a) Demonstrate the mathematical definition of DFA. Design DFA which accepts even number of a's and even number of b's where the input is a,b.
b) Compare features of NFA and NFA- $€$ transitions with example.

Or

2 a) Write and explain the steps for minimizing DFA with an example?
b) Design an NFA- $€$ to accept the string of a's and b's, such that, it can accept either the string consisting of one a followed by any number of a's or one b followed by any number of b's.

UNIT-II

3 a) Construct left and right linear grammar for the given NFA

b) Illustrate the Chomsky hierarchy with a neat sketch.

Or

4 a) Explain the step-by-step method to generate equivalent FA for the regular
b) Explain the Pumping lemma for the regular sets.

UNIT-III

5
a) Simplify the following grammar.

$$
\begin{aligned}
& S \rightarrow A a \mid B \\
& B \rightarrow A \mid b b \\
& A \rightarrow a|b c| B
\end{aligned}
$$

b) List and explain the closure properties of regular grammar.

Or

6 a) Simplify the grammar with the following productions.
S $\rightarrow \mathrm{A} a / \mathrm{B} / \mathrm{cA}$
B $\rightarrow \mathrm{A} / \mathrm{bb} / \mathrm{E}$
A ->bc/B
b) Demonstrate the importance of PDA using acase study.

UNIT-IV

7 a) Develop a PDA to accept the strings of the form $\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}}$ where $\mathrm{n}>=1$.
b) Discuss the use of NPDA in solving real-world problems.

Or

8 a) Develop a PDA to accept the language $\mathrm{WCW}^{\mathrm{R}}$ where W belongs to $(0+1)^{+}$and
W^{R} is the reverse of the string
b) Discuss the equivalence of PDA and Context free grammar.

UNIT-V

9 a) List the elements of TM's and give the block diagram of TM.
b) Design TM which accepts strings ending with 111 where the input is taken from $\{0,1\}$

Or

10 a) Explain Church's Hypothesis and Halting problem?
b) List and explain various Turing Machines with suitable diagrams.

II B. Tech II Semester Regular Examinations, June/July - 2022

FORMAL LANGUAGES AND AUTOMATA THEORY
(Common to CSE, CST, CSE(AIML), CSE(AI), CSE(DS), CSE(AIDS), CSE(CS), CSE(IOTCSIBCT), CSE(IOT), AIDS, CS \& AIML)
Time: $\mathbf{3}$ hours
Max. Marks: 70

Answer any FIVE Questions each Question from each unit
All Questions carry Equal Marks

UNIT-I

1 a) List and explain the classifications of Finite Automata. Discuss the applications of it.
b) Draw a DFA which accepts strings ending with 00 where the input is $\{0,1\}$

Or

2 a) List the elements and components of DFA and NFA.
b) Draw a DFA which accepts strings ending with 10 where the input is $\{0,1\}$

UNIT-II

3 a) Derive the regular expression for the following DFA

b) Explain the method of developing a FA from Regular expression using a case study.

Or
$4 \quad$ a)

Convert the regular expression for the above DFA
b) List and explain the Closure properties of Regular sets.

UNIT-III

5 a) What types of productions are accepted in CFG?
Check whether the grammar is ambiguous or unambiguous or not over alphabets $\{\mathrm{a}$, b).
$S \rightarrow \mathrm{aSalbSb} \backslash a \backslash b \backslash €$.
b) Explain the step-by-step method to prove that certain languages were not Regular.

Or

6 a) Simplify the following grammar
$\mathrm{S} \rightarrow \mathrm{ABa} / \mathrm{B} / \mathrm{c}$
$\mathrm{B} \rightarrow \mathrm{A} / \mathrm{bbA}$
$\mathrm{A} \rightarrow \mathrm{a} / \mathrm{bc} / \mathrm{BS}$
b) What is pumping lemma? Explain its closure properties?

UNIT-IV

7 a) Develop a PDA to accept the strings of the form $\mathrm{a}^{\mathrm{n}} \mathrm{b}^{3 \mathrm{n}}$ where $\mathrm{n}>=1$.
b) Discuss the notation and applications of two stack push down automata.

Or

8 a) Develop a PDA that accepts the strings of the form $\mathrm{a}^{\mathrm{n}} \mathrm{b}^{2 \mathrm{n}}$ where $\mathrm{n}>1$.
b) Compare DPDA with NPDA using a suitable example.

UNIT-V
9 a) Design a Turing Machine to accept the language $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \mathrm{c}^{\mathrm{n}} \mathrm{d}^{\mathrm{n}} / \mathrm{n}>=1\right\}$
b) Discuss the decidable and undecidable problems with examples.

Or

10 a) Develop a Turing Machine toaccept the language $\mathrm{WCW}^{\mathrm{R}}$ where W belongs to $(0+1)^{+}$and W^{R} is the reverse of the string.
b) Define the TM with formal notations. Explain the concept of Universal Turing Machine.

SET - 4

II B. Tech II Semester Regular Examinations, June/July - 2022

FORMAL LANGUAGES AND AUTOMATA THEORY
(Common to CSE, CST, CSE(AIML), CSE(AI), CSE(DS), CSE(AIDS), CSE(CS), CSE(IOTCSIBCT), CSE(IOT), AIDS, CS \& AIML)
Time: 3 hours

Max. Marks: 70

Answer any FIVE Questions each Question from each unit
 All Questions carry Equal Marks
 UNIT-I

1 a) Explain the formal definition of a DFA with an example.
b) Construct a DFA string accepting neither $a a$ nor $b b$ as a substring.

Or

2 a) Explain the formal definition of an NFA with a suitable example.
b) Compare and contrast the features of NFA with DFA. What is the importance of $-€$ transitions.

3 a) Draw the DFA for the following Regular Expressions

1. $(0+1)^{*} 101$
2. $a^{*} b^{*} a$
b) Demonstrate the Pumping lemma of a regular set with example.

Or

4 a) Draw the DFA for the following Regular Expressions

1. $(01)^{*} 1(0+1)^{*}$
2. $(a b)^{*+}(a+b)^{*}$
b) How to find equivalence of regular grammar and finite automata? Explain with example.

UNIT-III

5 a) Define Context Free Grammar.
Derive the left most and the rightmost derivations for the string aabbaa.
$G=(\{S, A\},\{a, b\}, S, P)$, where P is,

$$
\begin{aligned}
& S \rightarrow a A S \mid a \\
& A \rightarrow S b A|S S| b a .
\end{aligned}
$$

b) Consider the following CFG into GNF
(1) $S \rightarrow a A l b B$
(2) $\mathrm{B} \rightarrow \mathrm{bBIE}$
(3) $\mathrm{A} \rightarrow \mathrm{aAIE}$

Or

6 a) Design the CFG for the expressions

1. $a^{n} b^{n}$ where $n>=1$
2. $a^{n} b 2^{n}$ where $n>=1$
3. $\mathrm{WCW}^{\mathrm{R}}$, where W belongs to $(a+b)^{+}$and W^{R} is the reverse of the string
b) Illustrate ambiguous grammar and check the grammar is ambiguous or not

UNIT-IV

7 a) Define PDA(Push Down Automata) and Construct a PDA for the following grammar
S->aSa
$\mathrm{S}->\mathrm{bSb}$
S->c
b) Demonstrate two stack PDA with an example and explain the applications of it.

Or

8 a) Define PDA and Construct a PDA for the following grammar S->AA/a A->SA/b
b) Compare the features of DPDA(Deterministic Push Down Automata) and NPDA (Non Deterministic Push Down Automata) with a suitable example.

UNIT-V

9 a) Design a Turing Machine to accept the language $L=\left\{a^{n} b^{4 n} / n>=1\right\}$
b) Explain the concepts NP-Hard and NP-complete with examples.

Or

10 a) Define Turing Machine and design it to recognize the language $\mathrm{L}=\left\{0^{\mathrm{n}} 1^{2 \mathrm{n}} /\right.$ $n>=1\}$.Illustrate the action of Turing machine in accepting/rejecting the word $0^{3} 1^{3}$.
b) List and explain the types of Turing machines.

