

II B. Tech II Semester Supplementary Examinations, February – 2022 FORMAL LANGUAGES AND AUTOMATA THEORY

(Computer Science and Engineering)

	(Computer Science and Engineering)	
Time: 3 hoursMax. Marks: 75		
	Answer any FIVE Questions each Question from each unit	
	All Questions carry Equal Marks	
a)	Define Deterministic and Non-deterministic finite automaton.	[8N
b)	Design an NFA with $\sum = \{0, 1\}$ accepts all string in which the third symbol from the right end is always 0.	[7N
	Or	
a)	Convert the given NFA to equivalent DFA.	[8N
	q_0 1 q_1 q_2	
	1	
b)	Construct a Moore machine that determines whether an input string contains an even or odd number of 1's. The machine should give 1 as output if an even number of 1's are in the string and 0 otherwise.	[7N
a)	Prove that the language L = { $(10)^{p_1 q} \mid p, q \in N, p \ge q$ } is not regular.	[10N
b)	Describe the closure properties of Regular sets.	[5N
	Or	
a)	Design a NFA for the given regular expression $1 (1*01*01*)*$.	[8N
b)	Explain the procedure for converting finite automata to regular grammar with an example.	[7N
a)	For the grammar G = ({S}, {a, b}, S, P), find out the context free language. The productions are given below, $S \rightarrow abB$, $A \rightarrow aaBb$ $A \rightarrow \epsilon$ $B \rightarrow bbAa$	[8N
b)		[7N
	Or	

6	a) b)	Consider the CFG with {S,A,B} as the non-terminal alphabet, {a,b} as the terminal alphabet, S as the start symbol and the following set of production rules $S \rightarrow ASA \mid aB \mid b$ $A \rightarrow B$ $B \rightarrow b \mid \in$ Find a reduced grammar equivalent to the above grammar. Explain the steps to convert a CFG to GNF with an example.	[8M] [7M]		
	-)		[,]		
7	a)	Does push down automata have memory? Justify your answer.	[4M]		
	b)	Construct PDA for the given CFG, and test whether 010^4 is acceptable by this PDA. S $\rightarrow 0BB$	[7M]		
		$S \rightarrow OBB$ B $\rightarrow OS \mid 1S \mid 0$			
	c)	Mention the applications of PDA.	[4M]		
Or					
8	a)	Convert the following grammar to a PDA that accepts the same language. $G = (V, T, R, S)$ with $V = \{S\}$, $T = \{a, b, c\}$, and $R = \{S \rightarrow aSa, S \rightarrow bSb, S \rightarrow bSb$	[8M]		
	b)	c}. Show that $\{a^m b^n c^p m < n \text{ or } n < p\}$ is not deterministically context-free.	[7M]		
9	a)	What is the Turing test and why is it important?	[4M]		
	b)	Discuss the variants of Turing machines.	[4M]		
	c)	What is meant by Reducibility in NP-problems and why it is required? Explain.	[7M]		
Or					
10	a)		[9]/[]		
10	a)	Construct a Turing Machine for language $L = \{0^n 1^n 2^n n \ge 1\}.$	[8M]		

b) Show that the Post Correspondence Problem is decidable over unary alphabet. [7M]