

II B. Tech II Semester Supplementary Examinations, February - 2022 ELECTRONIC CIRCUIT ANALYSIS

(Electronics Communication Engineering)

Ti	me: 3	B hours Max. Marks: 7	5
		Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks	_
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
1	a)	Explain various high frequency parameters of a BJT and derive the relation between them.	[8M]
	b)	Draw the Hybrid- $\pi$ model for a common emitter transistor. At room temperature (300K) at I _C =10mA and V _{CE} =8V. h _{ie} =500, h _{oe} =2*10 ⁻⁴ µs, h _{fe} =100 and h _{re} =10 ⁻⁴ . At the same operating point f _T =50MHz and c _{ob} =3PF.Calculate the values of hybrid- $\pi$ parameters.	[7M]
		Or	
2	a)	Define $f_{\alpha}$ , $f_{\beta}$ and $f_{T}$ ? Derive the relationship between $f_{T}$ and $f_{\beta}$ ? Discuss the significance of $f_{T}$ ?	[8M]
	b)	Transistor has $h_{ie}=6k\Omega$ and $h_{fe}=224$ at $I_C=1mA$ , with $f_T=80MHz$ and $C_{b'c}=12pF$ . Determine $g_m$ , $r_{b'e}$ , $r_{bb'}$ , $C_{b'e}$ at room temperature.	[7M]
3	a)	Draw the circuit for CASCODE Amplifier. Explain its working, obtain overall values of the circuit in terms of h-parameters.	[8M]
	b)	Derive the effect of cascading on bandwidth of multistage amplifiers.	[7M]
		Or	
4	a)	Explain RC-coupled CE transistor circuit? Write the expressions for current gain.	[8M]
	b)	Compute the overall lower cut-off frequency of an identical two stage cascade of amplifiers with individual lower cut-off frequency given as 412 Hz.	[7M]
5	a)	Draw the circuit of a voltage series feedback amplifier and derive the expressions for $R_{if}$ and $R_{of}$ .	[8M]
	b)	The open loop gain of an amplifier is 100. What will be the overall gain when a negative feedback of 0.5 is applied to the amplifier?	[7M]
_		Or	
6	a)	An amplifier has a gain of 50 with negative feedback. For a specified output voltage, if the input required is 0.1V without feedback and 0.8V with feedback,	[8M]
	b)	Compute $\beta$ and open loop gain. Through the block schematics, show four types of negative feedback in amplifiers.	[7M]
7	a)	Establish the condition for frequency of oscillation in an RC phase shift oscillator with suitable diagram.	[8M]
	b)	With neat sketch explain the operation of LC oscillator. Derive the oscillation condition for LC circuits.	[7M]
		Or	
8	a)	Derive an expression for frequency of oscillations of a wien bridge oscillator using transistor.	[8M]
	b)	List out the comparisons between RC-phase shift oscillator and Wien bridge	[7M]

b) List out the comparisons between RC-phase shift oscillator and Wien bridge [7M] oscillator?



9	a)	Compare the various classes of operation of power amplifiers based on i) Operating cycle ii) Position of Q point iii) Efficiency	[8M]
	b)		[7M]
		Or	
10	a)	Derive an expression for tuning frequency of a single tuned amplifier in terms of quality factor and bandwidth of the amplifier?	[8M]
	b)	A single tuned transistor amplifier is used to amplify modulated RF carrier of 500kHz and bandwidth of 20kHz. The circuit has a total output resistance	[7M]

500kHz and bandwidth of 20kHz. The circuit has a total output resistance Rt=40k $\Omega$  and output capacitance Co=50pF. Calculate values of inductance and capacitance of the tuned circuit?