

[7M]

II B. Tech II Semester Supplementary Examinations, December - 2022 ELECTRONIC CIRCUIT ANALYSIS

(Common to ECE, EIE, & ECT)

Time: 3 hours

Max. Marks: 70

Answer any **FIVE** Questions each Question from each unit All Questions carry **Equal** Marks

UNIT--I

- 1 a) Derive the expressions for high frequency parameters in terms of low frequency [7M] parameters of a BJT.
 - b) Discuss about hybrid- π capacitances.

Or

- 2 a) The following low frequency (i.e hybrid- π) parameters for a given transistor are [7M] $I_C = 10 \text{ mA}$, $V_{CE} = 10 \text{ V}$ and at room temperature $h_{ie} = 500 \Omega$, $h_{oe} = 4X10^{-4} \text{ U}$, $h_{fe} = 100$, and $h_{re} = 10^{-4}$. At the same operating point $f_T = 50 \text{ MHz}$, $C_c = 3 \text{ pF}$. Find all the values of hybrid- π parameters.
 - b) Derive the expression for CE short circuit current gain. [7M]

UNIT--II

- 3 a) What are the different types of coupling methods used in multistage amplifiers? [7M] Explain.
 - b) What is Boot-strap technique? Explain with the help of neat diagrams, how it [7M] improves the input impedance of Darlington pair circuits?

Or

- 4 a) Draw the circuit diagram of Cascode amplifier and also obtain the overall voltage [7M] gain, current gain, input impedance and output impedance? Also mention its advantages.
 - b) Three identical cascaded amplifier stages have overall upper 3 dB frequency of [7M] 100 KHz and overall lower 3 dB frequency of 20 Hz. Find the upper and lower 3 dB frequency of individual stages.

UNIT--III

- 5 a) Derive an expression for the input and output impedances with feedback of a voltage [7M] shunt feedback amplifier?
 - b) In a negative feedback amplifier $A_v = 100$, $\beta = 0.02$, $V_S = 25$ mV. Determine A_{vf} , [7M] V_0 , V_f and loop gain A β .

Or

- 6 a) What is feedback? Why is it employed in an amplifier circuit? How many types of [7M] feedback are possible? Discuss.
 - b) Voltage gain of an amplifier without feedback is 60 dB. It decreases to 40 dB with [7M] feedback. Calculate the feedback factor.

UNIT--IV

- 7 a) Discuss about Barkhausen criteria. Draw the circuit of BJT based RC phase shift [7M] oscillator and explain how this condition can be satisfied.
 - b) A Colpitts oscillator is designed with $C_1 = 100 \text{ pF}$ and $C_2 = 7500 \text{ pF}$. Find the [7M] range of inductance values if the frequency of oscillation vary between 950 KHz and 2050 KHz.

Or

1...1.1.1.1.1.11

SET - 1

- 8 a) Derive the expressions for condition of oscillation and frequency of oscillation for [7M] general sinusoidal LC oscillators.
 - b) Explain the frequency and amplitude stability criterion for sinusoidal oscillators. [7M]

UNIT--V

- 9 a) Define conversion efficiency in power amplifiers? Find the conversion efficiency [7M] for a series fed class-A power amplifier.
 - b) A sinusoidal signal $V_s = 1.95 \sin 400t$ is applied to a power amplifier. The resulting [7M] current is $i = 12 \sin 400t + 1.2 \cos 800t + 0.9 \sin 1200t + 0.4 \cos 1600t$. Find i) the total harmonic distortion ii) percentage of increase in power because of distortion

Or

- 10 a) Derive an expression for bandwidth and Q-factor of a single tuned amplifier? Also, [8M] list the assumptions made for the derivation. [6M]
 - b) Write short notes on thermal stability.

2 of 2