

II B. Tech II Semester Regular Examinations, August/September - 2021 ELECTROMAGNETIC WAVES AND TRANSMISSION LINES

Гime	(Electronics Communication Engineering) : 3 hours Max. Marks: 7	5
	Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks	—
	UNIT - I	50
а) What are the major losses that occur in transmission lines? How a lossless line Characterized?	[8]
ł) Show that a transmission line will be distortion free if $CR = LG$.	[7
	OR	
а) Define and explain both lossless and distortion less transmission lines in terms of transmission line parameters.	[8
ł	Derive the transmission line equation.	[7
	UNIT - II	
а) Find the input impedance of a 75 Ω lossless transmission line of length (0.1 λ) If it is terminated in open circuit(using smith chart)	[8
ł	Write short notes on different lengths of Transmission lines with open end load?	[7
	OR	
а) Explain the principle of impedance matching with quarter wave transmission line	[8
ł) A 50 Ω coaxial cable feeds a 75 + j20 Ω dipole antenna. Find reflection coefficient and standing wave ratio.	[7
	UNIT - III	
а) Derive Poisons and Laplace equations from fundamentals.	[8
ł	Three parallel line charges 5nC/m, 4 nC/m and -6 nC/m respectively are located at (0,0), (3,0) and (0,4)m respectively. Find electric flux density (D) and electric filed intensity (E) at (3,4).	[7
	OR	
а) Derive an expression for the electric field intensity due to a finite length line charge along the Z- axis at an arbitrary point $Q(x,y,z)$.	[8
ł	A line charge $\rho = 200 \text{pC/m}$ lies along the X- axis. The surface of zero potential passes through the point P(0,5,4). Find the potential at point (1,3,-2).	[7
	UNIT - IV	
а) Explain Biot-savart law with necessary mathematical expressions.	[8
ł) Derive Maxwell's equations in Integral and Differential forms for time varying fields.	[7
	OR	
8) A thin ring of radius 5 cm is placed on plane Z=1cm, so that its center is at $(0,0,1)$ cm. If the ring carries 50mA along \mathbf{a}_{Φ} . Find H at (i) $(0,0,-1)$ cm (ii) $(0,0,10)$ cm.	[8
ŀ	(0,0,10) cm.	[7

b) State Maxwell's equations for magneto static fields. [7M]

(**R19**

SET - 1

UNIT - V

9	a)	For good dielectrics derive the expressions for α , β , ν and η .	[8M]		
	b)	Find α , β , ν and η . for Ferrite at 10GHz $\epsilon_r = 9$, $\mu_r = 4$, $s = 10$ ms/m.	[7M]		
OR					
10	a)	Derive the expression for attenuation and phase constants of uniform plane	[8M]		
		wave.			

b) Define Uniform plane wave. Prove that Uniform plane wave does not have field [7M] components in the direction of propagation.