III B. Tech I Semester Regular Examinations, Dec/Jan - 2022-23 **ELECTROMAGNETIC WAVES AND TRANSMISSION LINES**

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70

> Answer any FIVE Questions ONE Question from Each unit All Questions Carry Equal Marks ****

UNIT-I

Define a transmission Line? List out types of transmission lines? 1. [7M]Draw an equivalent circuit of 2-wire transmission line?

A lossy cable which has R = $25.2 \Omega / m$, L = $2 \mu H / m$, C = 2 pF / m, [7M] and G = 0 operates at f = 5 MHz. Find the attenuation constant and phase constant of the line?

(OR)

2. Define Phase velocity and Group velocity? A lossless [7M] transmission line of length 100 m has an inductance of 28µH and a capacitance of 20nF. Estimate (i) propagation velocity (ii) propagation velocity in the medium of relative permittivity is 9.

Derive an equation of 2-wire transmission line Input Impedance? [7M]

UNIT-II

3. Prove that the Z_{in} behavior of an Open End transmission line will [7M] change at every $\lambda/4$ length?

Define a term reflection coefficient? Estimate the minimum and [7M] maximum values?

(OR)

4. Draw and explain the impedance behavior of a transmission line [7M] with respect to length when line is terminated with short end.

Draw a diagram of Smith Chart and explain each part? List out [7M] the applications of Smith Chart?

UNIT-III

5. Two parallel line charges, $\rho L1 = 5nC/m$ and $\rho L2 = 4nC/m$ are [7M] located at (0, 0) and (3, 0) respectively. Find D at (3, 4).

Define Gauss's Law? Derive an equation ∇ .D= ρ_v

[7M]

(OR)

6. Determine the charge enclosed in a cylinder shown in Fig.1 [7M] when the volume charge density is $\rho_v = 2e^{-z} (x^2 + y^2)^{-1/4} c/m^3$.

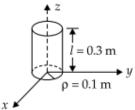


Fig. 1 Charge in a Cylinder

Find the capacitance of an isolated sphere of radius 1 cm.

[7M]

R20

SET - 1 Code No: R2031042

UNIT-IV

7. In a magnetic flux density of $B=2a_x +3 a_y wb/m^2$, a current element, 10az mA-m is placed. Find the force on the current element.

Derive H-field due to a finite current element placed along Z-[7M]

(OR)

8. List out Maxwell's equations in Static and time varying form. [7M] Explain the differences between them?

The tangential component of E in medium 1 is the same as that [7M] of E in medium 2 at any boundary?

9. When the amplitude of the magnetic field in a plane wave is 2 [7M] A/m, (i) determine the magnitude of the electric field for the plane wave in free space (ii) determine the magnitude of the electric field when the wave propagates in a medium which is characterized by $0 \sigma = 0$, $\mu = \mu_0$ and $\epsilon = 4\epsilon_0$.

Discuss the techniques of wave incidences in the medium? [7M] (OR)

The wavelength of an x-directed plane wave in a lossless medium 10. a) [7M] is 1 m and the velocity of propagation is 1.5×10^{10} cm/s. The wave has z-directed electric field with an amplitude equal to 10 V/m. Find the frequency and permittivity of the medium.

Explain the properties of Parallel Polarization in Oblique Wave [7M] Incidence?

III B. Tech I Semester Regular Examinations, Dec/Jan – 2022-23 ELECTROMAGNETIC WAVES AND TRANSMISSION LINES

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70

Answer any **FIVE** Questions **ONE** Question from **Each unit** All Questions Carry Equal Marks

UNIT-I

- 1. a) Define Distortion Less Line? Estimate the propagation constant [7M] of a Distortion Less Line?
 - b) A telephone line has R = 30 Ω/km , L = 100 mH/km, G = 0, and [7M] C = 20 μ F/km. At f = 1 kHz, obtain: (a) The characteristic impedance of the line (b) The propagation constant.

(OR)

- 2. a) A transmission line is lossless and is 25 m long. The input [7M] Impedance of a line is Z_{in} = 37-j 23 Ω at a frequency of 10 MHz. The inductance and capacitance of the line are L = 300 nH/m, C = 40 pF/m. Find the Load impedance?
 - b) Define and explain the properties of an infinite line?

UNIT-II

[7M]

- 3. a) Define VSWR? Derive the relation between reflection coefficient [7M] and VSWR.
 - b) How can be used UHF lines as circuit elements? Explain with [7M] suitable example.

(OR)

- 4. a) Prove that at every half wave length the Input Impedance of a [7M] transmission line will be repeated?
 - b) A 50-m-long lossless transmission line with Zo = 75Ω operating [7M] at 1 MHz is terminated with a load $Z_L = 60 + j50\Omega$. If velocity of the wave is 0.6times of free space velocity on the line, find (i) The reflection coefficient and (ii) The standing wave ratio

UNIT-III

5. a) Find the capacitance for a 10 km long coaxial cable shown in Fig.2 [7M]

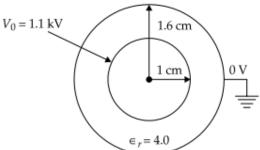


Fig.2 Coaxial cable

b) A charge, Q1 = -10 nC is at the origin in free space. If the x- [7M] component of E is to be zero at the point (3, 1, 1), what charge, Qt should be kept at the point (2, 0, 0)?

(OR)

1 of 2

- 6. a) Two parallel line charges ρ_{L1} = 10 nC/m and ρ_{L2} = 5nC/m are [7M] located at (3, 0) and (0, 4) m respectively. Find D and E at (0, 0).
 - b) Define electric potential? Derive the potential equation due to [7M] charge Q.

UNIT-IV

- 7. a) What is the current density which produces a magnetic field of [7M] $H=28 \sin x a_y$?
 - b) The normal component of D is continuous across any boundary [7M] except at the surface of the conductor. Prove this statement?
- 8. a) If a magnetic field, $H = 3a_x + 2a_y$ A/m exists at a point in free [7M] space, what is the magnetic flux density at the point?
 - b) List out the Maxwell's Magneto static fields and derive any one [7M] of the equation?

UNIT-V

- 9. a) Explain the Propagation Characteristics of EM Waves in a [7M] Conducting Medium with suitable equations?
 - b) If H field is given by $H(z,t)=10 \text{ Cos } (10^8 \text{ t}+40\text{z}) \text{ a}_y \text{ A/m}$, [7M] identify the amplitude, frequency and phase constant. Find the wavelength.

(OR)

10. A medium like copper conductor which is characterized by the [14M] parameters $\sigma = 5.8 X 10^7$ mho/m, $\varepsilon_r = 1$, $\mu_r = 1$ supports a uniform plane wave of frequency 1KHz. Find the attenuation constant, propagation constant, intrinsic impedance, wavelength and phase velocity of the wave

III B. Tech I Semester Regular Examinations, Dec/Jan - 2022-23 ELECTROMAGNETIC WAVES AND TRANSMISSION LINES

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70

Answer any **FIVE** Questions **ONE** Question from **Each unit**All Questions Carry Equal Marks

UNIT-I

- - b) A certain transmission line operating at $\omega = 10^6$ rad/s has $\alpha = 10$ [7M] dB/m, $\beta = 2$ rad/m, and Zo = 50 + j50 Ω , and is 10 m long. If the line is connected to a source of 10 V, Zs = 40Ω and terminated by a load of 20 + j50 Ω , determine input impedance?

(OR)

- 2. a) A telephone line has R = $50 \Omega/\text{km}$, L = 50 mH/km, G = $2X10^{-6}$ [7M] mhos/km, and C = $20 \mu\text{F/km}$. At f = 5 kHz, obtain: (a) The propagation constant (b) The phase velocity
 - b) Derive an equation of Characteristic Impedance? Estimate the [7M] Characteristic Impedance offered by a Lossless line?

UNIT-II

3. Prove that the Z_{in} of a Short End transmission line of length [14M] $1 < \lambda/4$ is an Inductor?

(OR)

- 4. a) Explain the construction of a Smith chart and explain how it is [7M] different from general charts?
 - b) Find the input impedance of a 75Ω lossless transmission line of [7M] length λ , if it is terminated in open circuit.

UNIT-III

- 5. a) In a spherical region, the electric displacement is given by D=10 [7M] r^2 a_r mC/m. Find the total charge enclosed by the volume specified by r = 40cm, $\theta = \pi / 4$ and $\phi = 2\pi$.
 - b) Define Gauss's Law? Derive one of the Maxwell's equation with [7M] help of Gauss' law?

(OR)

- 6. a) A charge of 50 PC is at rest in free space. Find the potential at a [7M] point, A 1m away from the charge.
 - b) An infinite sheet in x-y plane extending from $-\infty$ to ∞ in both [7M] directions has a uniform charge density of 50 nC/m². Find the electric field at z = 5cm.

UNIT-IV

- 7. a) Determine J at $(2,\pi,0)$ in cylindrical coordinates if the magnetic [7M] field, $H = 5\rho \sin\phi a_z mA/m^2$.
 - b) Explain about Magnetic Scalar and Vector potentials?

(OR)

[7M]

1 of 2

8.	a)	If a magnetic field, $H = 2a_x + 5a_y + 1a_z$ A/m exists at a point medium $\mu_r = 4$, what is the magnetic flux density at the point?	[7M]
	b)	Define and explain Ampere's circuit law and Ampere's force law?	[7M]
		<u>UNIT-V</u>	
9.	a)	Explain the property of "Depth of penetration"?	[7M]
	b)	Define the terms Good conductor and Dielectrics? Discuss about	[7M]
		Wave Propagation Characteristics in Good Dielectrics?	
		(OR)	
10.	a)	Earth has a conductivity of 10^{-2} mho /m, μ_r =4, ϵ_r =10. What are	[7M]
		the conducting characteristics of the earth at (a) $f = 50$ Hz (b) $f =$	
		10MHz	
	b)	Explain about Circular and Elliptical polarization?	[7M]
	b)	Explain about Circular and Elliptical polarization?	

III B. Tech I Semester Regular Examinations, Dec/Jan – 2022-23 ELECTROMAGNETIC WAVES AND TRANSMISSION LINES

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70

Answer any **FIVE** Questions **ONE** Question from **Each unit**All Questions Carry Equal Marks

UNIT-I

- 1. a) Define Primary and Secondary constants? Derive the relation [7M] between them?
 - b) A distortionless line has Zo = 50 Ω , α = 15 mNp/m, V = 0.6C, [7M] where C is the speed of light in a vacuum. Find R, L, G, C, and λ at 100 MHz.

(OR)

- 2. a) A transmission line operating at 500 MHz has Zo = 80 Ω , α = [7M] 0.04 Np/m, β =2 rad/m. Find the line parameters?
 - b) Discuss the differences between Distortion Less Line, Lossless [7M] Line and Infinite line interms of line parameters?

UNIT-II

- 3. a) Define Quarter Wave transformer? Explain the impedance [7M] behavior of the line?
 - b) For a transmission line which is terminated in a normalized [7M] impedance, Z_n , VSWR = 100. Find the normalized impedance magnitude.

(OR)

- 4. a) Prove that the Z_{in} of a Open End transmission line of length [7M] $l=\lambda/4$ is a resonant circuit? Draw the circuit diagram?
 - b) Define stub matching? Explain the designing procedure of a [7M] single stub matching.

UNIT-III

- 5. a) An electric field is given by $E=10y a_x +20 a_y V/m$. Find the [7M] potential function, V. Assume V=0 at the origin.
 - b) Solve some of applications (any two) using Gauss's Law? [7M]

(OR)

- 6. a) Given that $D = Zp \cos^2 \varphi$ az C/m^2 , calculate the charge density [7M] at $(1, \, \mathbb{I}/4, \, 3)$ and the total charge enclosed by the cylinder of radius 1 m with $-2 \le Z \le 2m$.
 - b) Classify the capacitors and estimate capacitance of any of the [7M] capacitor?

UNIT-IV

7. a) How to convert Maxwell's Static EM fields into Time varying [7M] fields? Explain?

b) Determine the magnetic flux between the conductors of a coaxial [7M] cable of length 5m. The radius of the inner conductor is a = 2 cm and that of the outer conductor is 3 cm. The current enclosed is 5A.

(OR)

8. a) What is the magnetic field, H in Cartesian coordinates due to z- [7M] directed current element? Find J if I =5A.

b) The region y < 0 contains a dielectric material for which $\in_{r1} = 2$ [7M] and the region y > 0 contains a dielectric material for which $\in_{r2} = 4$. If $E_1 = -3a_x +5a_y +7 a_z$ V/m, find the electric field, E2 and D2 in medium 2.

UNIT-V

9. a) Based on Maxwell's equations, Derive wave equations in free [7M] space.

b) Explain the properties of a EM wave incident in normal on [7M] perfect conductor in Uniform plane wave?

(OR)

10. a) Prove that the ratio of E to H is 377Ω in UP Wave? [7M]

b) Define polarization, write and explain different types of [7M] polarization.