

II B. Tech II Semester Regular/Supplementary Examinations, November - 2020 ELECTRICAL MACHINES-II

(Electrical and Electronics Engineering)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any FOUR Questions from Part-B

* ``

PART -A

1.	a)	Why an Induction motor is called as rotating transformer?	(2M)		
	b)	Comment on the variation of torque with respect to slip in three phase induction motor.	(3M)		
	c)	Mention the applications of shaded pole motor.	(2M)		
	d)	Compare MMF and synchronous impedance methods of estimating voltage regulation of synchronous alternator.	(3M)		
	e)	What is synchronizing power?	(2M)		
	f)	What are the applications of synchronous condenser.	(2M)		
PART –B					
2.	a)	Explain in detail the constructional feature of wound rotor three phase induction motor.	(7M)		
	b)	A 25 hp, 400 V, 50 Hz, 4-pole, star connected induction motor has the following impedances per phase in ohms referred to the stator side : R_s = 0.641, $R'_r = 0.322$: X_s =1.106, $X'_r = 0.464$ and $X_m = 26.30$. Rotational losses are assumed constant and are 1.1 kW and the core losses are assumed negligible. If the slip is 2.2% at rated voltage and frequency, find i) speed ii) stator current iii) power factor iv) output and input power and v) efficiency of motor.	(7M)		
3.	a)	Explain the no-load and blocked rotor tests and also procedure to predetermine the efficiency using circle diagram of a three phase induction motor.	(7M)		
	b)	A three phase induction motor has a starting torque of 100% and a maximum torque of 200% of the full-load torque. Determine : i) slip at which maximum torque occurs ii) full-load torque and iii) rotor current at starting in per unit of full-load rotor	(7M)		
		current.			
4.	a)	Explain the equivalent circuit of a single phase induction motor with neat sketch.	(7M)		
	b)	A 230 V, 50 Hz, 4-pole single phase induction motor has the following equivalent circuit impedances referred towards stator side: $R_{1m}=2.2 \Omega R_2'=4.5 \Omega, X_{1m}=3.1\Omega X_2'=2.6 \Omega \text{ and } X_M=80 \Omega$ Friction, wind age and core loss = 40 W For a slip of 0.03 pu, calculate a) input current b) power factor c) developed	(7M)		

power d) output power and e) efficiency

Code No: R1622022

- 5. a) Explain in detail the distributed and concentrated windings and how the (7M) performance of the machine can get affected by the windings construction.
 - b) A 9 kVA, 208 V, 1200 rpm three phase, 60 Hz star-connected generator has a (7M) field winding resistance of 4.5Ω . The armature impedance is $(0.3 + j0.5)\Omega$ per phase. When the generator operates at full load and 0.8 pf lagging, the filed winding current is 5 A. Its rotational losses is 500W. Determine i) voltage regulation ii) efficiency of alternator iii) torque applied by the prime mover.
- 6. a) Explain the effect of increasing driving torque and speed of one of the (7M) alternators in a parallelly connected two alternators
 - b) Two star –connected synchronous generators connected in parallel have an emf (7M) of 1200 V per phase share a common star-connected share impedance (2 + j1.0) Ω /phase. The synchronous impedances of the machines are $Z_{s1} = 0.1+j2$ Ω /phase and $Z_{s2}= (0.2+j3)$ Ω /phase respectively. Determine the common terminal voltage, power outputs and no-load circulating current when two machines internal emfs have a phase divergence 5⁰.
- 7. a) Describe the mathematical analysis of power developed in synchronous motor. (7M)
 - b) Explain the various starting methods of synchronous motor. (7M)

Code No: RT22013

II B. Tech II Semester Supplementary Examinations, November - 2020 **STRENGTH OF MATERIALS - II**

(Civil Engineering)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. Answer ALL the question in Part-A

3. Answer any THREE Questions from Part-B

~~~~~

## PART -A

| 1. | a) | What are different failures?                                                                    | (4M)     |
|----|----|-------------------------------------------------------------------------------------------------|----------|
|    | b) | Write about axial couple.                                                                       | (3M)     |
|    | c) | Write the expression for buckling load (or) Crippling load when both ends of the                | (4M)     |
|    |    | Columns are fixed? Explain each term.                                                           |          |
|    | d) | Write the conditions for stability.                                                             | (4M)     |
|    | e) | What are the types of beams?                                                                    | (3M)     |
|    | f) | Write the conditions of equilibrium.                                                            | (4M)     |
|    |    | PART -B                                                                                         |          |
| 2. |    | In a material the principal stresses are 60 $MN/m^2$ , 48 $MN/m^2$ and - 36 $MN/m^2$ .          | (16M)    |
|    |    | Calculate                                                                                       |          |
|    |    | (i) Total strain energy                                                                         |          |
|    |    | (ii) Volumetric strain energyP                                                                  |          |
|    |    | (iii) Shear strain energy                                                                       |          |
|    |    | (iv) Factor of safety on the total strain energy criteria if the material                       |          |
|    |    | yields at 120 MN/m <sup>2</sup> .                                                               |          |
|    |    | Take $E = 200 \text{ GN/m}^2$ and $1/m = 0.3$                                                   |          |
| 3. |    | A shaft is required for transmitting a power of 60 kW running at a speed of 750                 | (16M)    |
| 5. |    | rpm. if the available shaft material has permissible shear strength of 36 N/mm <sup>2</sup> and | (101 v1) |
|    |    | rigidity modulus of 96kN.mm design a hollow shaft such that the inner diameter is               |          |
|    |    | 0.6 times the outer diameter.                                                                   |          |
|    |    |                                                                                                 |          |

4. A mild steel tube 4m long, 3cm internal diameter and 4mm thick is used as a strut (16M) with both ends hinged. Find the collapsing load, what will be the crippling load if (i) Both ends are built-in.

(ii) One end is built-in and one end is free

Determine stresses in case of chimney with suitable example (8+8M) 5. (a) (b)

