:

II B. Tech II Semester Regular Examinations, June/July - 2022 DIGITAL ELECTRONICS

(Electrical and Electronics Engineering)

Tiı	ne: 🤅	3 hours Max. Marks: 70	
		Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks	
		UNIT-I	
1	a)	Convert the numbers $(0.3125)_{10}$ and $(1101.01)_2$ in base 8.	[7M]
	b)	i. List the truth table of $F = xy + xy' + y'z$ ii. Draw logic diagrams to implement the Boolean expression Y = A + B + B'(A + C')	[7M]
		Or	
2	a)	Subtract the two numbers using 10's complement and 9's complement 6,428 – 3,409	[7M]
	b)	Represent the decimal number 5.137 in (i) BCDcode (ii) Excess-3 code	[7M]
		UNIT-II	
3	a)	Simplify the following Boolean function, using three-variable maps: $F(x, y,z) = \sum (0,2,6,7)$	[7M]
	b)	Explain a four-bit binary adder circuit with relevant diagram.	[7M]
		Or	
4	a)	Why is a four-bit adder circuit implemented with full adders? Explain the designing procedure?	[7M]
	b)	Draw a circuit for a two's complement implementer using the 4-bit adder cum subtractor circuit.	[7M]
		UNIT-III	
5	a)	Design a 8 to 1 digital multiplexer? Also design with 4:1 MUX? Explain?	[7M]
	b)	Give the schematic circuit of a 2-to-4 binary decoder with an active-low enable input. Show the Truth Table.	[7M]
		Or	
6	a)	Show a multiplexer is also a Boolean expression implementer.	[7M]
	b)	Draw a block diagram of a PLA and explain it's architecture. Write differences between PLA and PROM. What is the design procedure of a PLA based circuit? UNIT-IV	[7M]
7	a)	Explain the designing procedure of Master Slave JK Flip-Flop with suitable diagram?	[7M]
	b)	Draw the waveforms to enter a serial data 11101into a SIPO shift register. Explain?	[7M]
		Or	
8	a)	What is a decade counter? Explain its circuit and write the applications of a decade counter?	[7M]

b) What do we mean by SIPO, PISO, PIPO and SISO Shift registers? Explain with [7M] timing diagram (i) shift left in each and (ii) shift right in each.

UNIT-V

- 9 a) Distinguish between a Transition table and Excitation table? Explain with an [7M] example.
 - b) Define Finite State machine for the state table using JK Flip-Flop. [7M]

		Inputs (AB)			
Present state	00	01	10	11	
$(Q_1 Q_0)$					
00	01	00	00	01	
01	10	00	00	10	
10	11	00	00	11	
11	01	00	00	01	
	Next State $(Q_1 * Q_0 *)$				

Or

- 10 a) What is the importance of reduction of number of states? What is the advantage of [7M] standard form for state tables? Explain with an example.
 - b) Explain the design procedure of Asynchronous sequential circuits. [7M]

2 of 2

II B. Tech II Semester Regular Examinations, June/July - 2022 DIGITAL ELECTRONICS

(Electrical and Electronics Engineering)

Ti	me: (3 hours Max. Marks: '	70
		Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks	
		UNIT-I	
1	a)	Given the two binary numbers $X = 10101111$ and $Y = 10000101$, perform the subtraction	[7M]
	b)	(i) <i>X</i> - <i>Y</i> and (ii) <i>Y</i> - <i>X</i> by using 2's complement technique? i. Express the Boolean function $F = xy + x'z$ as a product of maxterms ii. Find the complement of $F = wx + yz$; then show that $FF' = 0$ and $F+F' = 1$ Or	[7M]
2	a)	Convert the following expressions into sum of products and product of sums: i. $(AB + C'D)(B+C'D)$ ii. $Y' + r(r + r')(r + r')$	[7M]
	b)	ii. $X' + x(x + y')(y + z')$ Draw the logic diagram to the following Boolean expressions without simplifying them:	[7M]
		i. $BC'+AB+ACD$ ii. $(A+B)(C+D)(A'+B+D)$ UNIT-II	
3	a)	Simplify the following Boolean function, using three-variable maps:	[7M]
5	<i>a)</i>	$F(x, y,z) = \sum (0,2.3,4,6)$	
	b)	Draw the circuit diagram of a 2-bit adder-subtractor and explain the function?	[7M]
		Or	
4	a)	Draw the block diagram of a full adder using two half adders and one OR gate.	[7M]
	b)	Simplify the following Boolean expression, using three-variable maps: F(x,y,z) = xy + xy'z' + x'yz'	[7M]
_		UNIT-III	
5	a)	Design a combinational circuit that will accomplish the multiplication of the 2-bit binary number $X_1 X_0$ by the 2-bit binary number $Y_1 Y_0$. Is a two-level circuit the most economical? Justify?	[7M]
	b)	What is advantage of a PROM compared to the PLA and PALs? Explain.	[7M]
		Or	
5	a)	Construct a 4 X16 decoder using five 2 X4 decoder modules. Explain with a neat schematic diagram.	[7M]
	b)	What is the difference between a digital multiplexer and a digital demultiplexer? Explain with an example?	[7M]
		UNIT-IV	
7	a)	Define D and T flip-flop with the help of truth table? Also design the D and T flip- flop using JK flip flop?	[7M]
	b)	Design a 4-bit asynchronous decade counter and draw the timing diagram.	[7M]
		Or	

Code No:R2022022

/	
	R20
	KZU

8	a)	Draw the timing diagram of a 4-bit asynchronous counter and explain?	[7M]
	b)	Draw and explain briefly an Asynchronous Mod-12 counter?	[7M]
		UNIT-V	
9	a)	Design a 5 state sequential machine whose sequential states are: 000, 001, 010, 110, 111, 000Assume initial state is 000.	[7M]
	b)	Explain the design procedure of synchronous sequential circuits.	[7M]
		Or	
10	a)	Why state reduction is necessary in sequential circuit design? What are the different methods of state reduction? Explain implication table method of state reduction with	[7M]

an example.
b) A synchronous counter is controlled by two input signals A and B. The counter does [7M] not operate, if A = 0 and B = 0. When A = 0 and B = 1, the counter operates as a mod four counter. If A=1 and B=0 the counter operates as a mod eight counter. Draw an FSM chart and design a circuit?

II B. Tech II Semester Regular Examinations, June/July - 2022 DIGITAL ELECTRONICS

(Electrical and Electronics Engineering)

Ti	me:	3 hours Max. Marks	: 70
		Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks	
		 UNIT-I	
1	a)	i. Subtract $(12.50)_{10}$ from $(18.75)_{10}$ in binary using 1's complement method? ii. Find the Gray Code number for the given 12-bit binary number 1 0 0 1 1 0 1 0 0 1 1 1 and explain the procedure?	[7M]
	b)	Implement the Boolean function $F = xy + x'y' + y'z$ with AND, OR and inverter gates	[7M]
		Or	
2	a)	Express the following sum-of -Products function $F(A,B,C,D) = \Sigma(3,5,9,11,15)$ in to POS form.	[7M]
	b)	Show that the dual of the exclusive-OR is equal to its complement?	[7M]
		UNIT-II	
3	a)	Simplify the following Boolean expression, using any two mapping techniques. F(x,y,z) = xy + x'y'z' + x'yz'	[7M]
	b)	Implement 8-bit adder circuit using full adders as the building blocks.	[7M]
		Or	
4	a)	Simplify the Boolean function, $F(A,B,C,D)=\sum(0,1,4,5,7,15)+d(10,11,14)$. Explain the procedure?	[7M]
	b)	Draw the logic diagram of a half subtractor using NOR gates only.	[7M]
		UNIT-III	
5	a)	Implement the following function using a multiplexer of proper size. $F(w, x, y, z) = \sum m(0, 1, 2, 3, 4, 9, 13, 14, 15)$	[7M]
	b)	\overline{G} ive the logic circuit schematic to realize a BCD to decimal decoder.	[7M]
		Or	
6	a)	Design a 4 bit comparator using PROMs?	[7M]
	b)	What is a difference between an encoder and a decoder? Explain with an example.	[7M]
		UNIT-IV	
7	a)	What are the differences in a Master Slave JK FF, a Positive edge triggered JK-FF and a Negative edge triggered JK-FF?	[7M]
	b)	Draw a logic diagram of 4-bit ripple counter and explain its operation with timing diagram and sequence table. What modification is required to use as a decade counter?	[7M]
		Or	

Or

Code	No:	R2022022 R20 SET -	3
8	a)	Write the difference between the following counters (a) Synchronous counter and asynchronous counter (b) Binary UP and binary DOWN counter	[7M]
	b)	Draw the logic circuit diagram of universal shift register and explain its operation with functional table.	[7M]
		UNIT-V	
9	a)	Write design procedure of a finite state machine.	[7M]
	b)	Design a sequential circuit (finite state machine) for Table given below using D flip- flops.Assume two inputs are A and B, outputs of the sequential circuit are outputs of	[7M]

b) Design a sequential circuit (inite state machine) for Table given below using D inpflops. Assume two inputs are A and B, outputs of the sequential circuit are outputs of Dflip-flops, present state =S, Next State=S*. Consider the four states of the sequential circuit are $S_0=00$, $S_1=01$, $S_2=10$ and $S_3=11$.

	Inputs (AB)						
Present	00	00 01 10 11					
state (S)							
S_0	S_1	S_0	S_0	S_1			
S_1	S_2	S_0	S_0	S_2			
S_2	S_3	S_0	S_0	S_3			
S_3	S_1	S_0	S_0	S_1			
	Next State (S*)						

Or

- 10 a) Draw the state diagram and state table of a up-down counter. Design the Up-Down [7M] counter using Tflip-flops.
 - b) The state diagram of a sequential circuit is given in Fig. Draw the state table for Fig. [7M] Assume two inputs are A and B, output is O.

II B. Tech II Semester Regular Examinations, June/July - 2022 DIGITAL ELECTRONICS

(Electrical and Electronics Engineering)

		Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks	
		UNIT-I	
l	a)	Generate a Hamming Code for the given 4-bit message word 1001 and rewrite the	[7M
	b)	entire message in Hamming Code. Obtain the truth table of the function, and express function in sum-of-minterms and product of max terms $Y (xy + z)(y + xz)$. Or	[7M
	a)	For the Function $F = xy'z + x'y'z + w'xy + wx'y + wxy$, draw the logic diagram using original Boolean expression and also for simplified expression. Compare the total number of gates for the two.	[7M
	b)	Convert the given number "B2FA" to binary and Find the 2's complement of the result?	[7N
		UNIT-II	
	a)	Simplify the Boolean function, using five-variable maps F(A,B,C,D,E)=A'B'CE'+B'C'D'E'+A'B'D'+B'CD'+A'CD+A'BD	[7N
	b)	Design a full-subtractor circuit with three inputs x,y , B_{in} and two outputs <i>Diff</i> and B_{out} . Where B_{in} is the input borrow, B_{out} is the output borrow and <i>Diff</i> is the difference.	[7N
		Or	
	a)	Draw a logic diagram using only two-input NOR gates to implement the following function: $F(A,B,C,D) = (A \oplus B)'(C \oplus D)$	[7N
	b)	Design the Excess-3 code adder circuit.	[7N
		UNIT-III	
	a)	Implement the following logic function with 2n X1 multiplexer, where n is the number of variables in the function. $F(A, B, C, D) = S(4, 5, 6, 7, 8, 13, 14, 15)$.	[7N
	b)	Why does a carry look-a-head generator give a fast adder? How much is the speed up for an 8-stage circuit? Explain.	[7N
		Or	
	a)	What is a difference between a decoder and a digital demultiplexer? Explain their truth table differences by taking an example.	[7N
	b)	Construct a 4 X16 decoder using two 3 X 8 decoder modules and additional logic. Show the schematic diagram neatly. UNIT-IV	[7N
	a)	How does a SR latch differ from a gated RS latch?	[7N
	b)	Write the count sequence of 3-bit binary ripple counter. Design a 3-bit ripple counter using J-K flip-flops	[7N
		Or	

|"|"|||"|"|||||

- 8 a) Design a 4-bit binary UP/DOWN ripple counter with a control input for UP/DOWN [7M] counting
 - b) Design a PIPO, which is a 4-bit buffer register with parallel in (loading) and parallel [7M] output (storing)

UNIT-V

- 9 a) Write difference between Mealy and Moore machines in detail. [7M]
 - b) Design a sequential circuit for the state Table using D flip-flops. Assume twoinputs [7M] are A and B, output of the sequential circuit is O, present state of D flip-flops = Q_1Q_0 , Next State of D flip-flops = $(Q_1 * Q_0 *)$.

	Inputs (AB)					
Present	00	01	10	11		
state($Q_1 Q_0$)						
00	01/0	00/0	00/0	01/0		
01	10/1	00/1	00/1	10/1		
10	11/0	00/0	00/0	11/0		
11	01/1	00/1	00/1	01/1		
	Next State $(Q_1^* Q_0^*)/\text{Output}(O)$					

Or

- 10 a) A sequential circuit has two inputs X and CLOCK and one output O. Incoming data [7M] are examined in consecutive groups of three digits and the output O=1 for the following three input sequences 000, 010 and 111. Draw a state diagram and implement the sequential circuit using J-K flip-flops.
 - b) Define Finite state machine for the state table using D Flip-Flops.

[7M]

		Input	s (AB)	
Present state	00	01	10	11
(Q_1Q_0)				
00	01	00	00	01
01	10	00	00	10
10	11	00	00	11
11	01	00	00	01
	Next State $(Q_1 * Q_0 *)$			