II B. Tech II Semester Regular Examinations, June/July - 2022
 DIGITAL ELECTRONICS
 (Electrical and Electronics Engineering)

Time: 3 hours
Max. Marks: 70

Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks
 UNIT-I

1 a) Convert the numbers $(0.3125)_{10}$ and $(1101.01)_{2}$ in base 8.
b) i. List the truth table of $F=x y+x y^{\prime}+y^{\prime} z$
ii. Draw logic diagrams to implement the Boolean expression $\mathrm{Y}=\mathrm{A}+\mathrm{B}+\mathrm{B}^{\prime}\left(\mathrm{A}+\mathrm{C}^{\prime}\right)$

Or
2 a) Subtract the two numbers using 10's complement and 9's complement 6,428-3,409
b) Represent the decimal number 5.137 in (i) BCDcode (ii) Excess-3 code

UNIT-II

3 a) Simplify the following Boolean function, using three-variable maps:
$F(x, y, z)=\sum(0,2,6,7)$
b) Explain a four-bit binary adder circuit with relevant diagram.

Or
4 a) Why is a four-bit adder circuit implemented with full adders? Explain the designing procedure?
b) Draw a circuit for a two's complement implementer using the 4-bit adder cum subtractor circuit.

UNIT-III

5 a) Design a 8 to 1 digital multiplexer? Also design with 4:1 MUX? Explain?
b) Give the schematic circuit of a 2-to-4 binary decoder with an active-low enable input. Show theTruth Table.

Or
6 a) Show a multiplexer is also a Boolean expression implementer.
b) Draw a block diagram of a PLA and explain it's architecture. Write differences between PLA and PROM. What is the design procedure of a PLA based circuit?

UNIT-IV

7 a) Explain the designing procedure of Master Slave JK Flip-Flop with suitable diagram?
b) Draw the waveforms to enter a serial data 11101 into a SIPO shift register. Explain?
Or

8 a) What is a decade counter? Explain its circuit and write the applications of a decade counter?
b) What do we mean by SIPO, PISO, PIPO and SISO Shift registers? Explainwith timing diagram (i) shift left in each and (ii) shift right in each.

UNIT-V
9 a) Distinguish between a Transition table and Excitation table? Explain with an example.
b) Define Finite State machine for the state table using JK Flip-Flop.

	Inputs $(\boldsymbol{A B})$				
Present state $\left(\boldsymbol{Q}_{\mathbf{1}} \boldsymbol{\boldsymbol { Q } _ { \mathbf { 0 } }}\right)$	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 0}$	$\mathbf{1 1}$	
00	01	00	00	01	
01	10	00	00	10	
10	11	00	00	11	
11	01	00	00	01	
	NextState $\left(Q_{1}{ }^{*} Q_{0}{ }^{*}\right)$				

Or
10 a) What is the importance of reduction of number of states? What is the advantage of standard form for state tables? Explain with an example.
b) Explain the design procedure of Asynchronous sequential circuits.

II B. Tech II Semester Regular Examinations, June/July - 2022
 DIGITAL ELECTRONICS
 (Electrical and Electronics Engineering)

Time: 3 hours
Max. Marks: 70

Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks
UNIT I
UNIT-I

1 a) Given the two binary numbers $\mathrm{X}=10101111$ and $\mathrm{Y}=10000101$, perform the subtraction
(i) $X-Y$ and (ii) $Y-X$ by using 2's complement technique?
b) i. Express the Boolean function $F=x y+\mathrm{x}^{\prime} \mathrm{z}$ as a product of maxterms
ii. Find the complement of $\mathrm{F}=\mathrm{wx}+\mathrm{yz}$; then show that $\mathrm{FF}^{\prime}=0$ and $\mathrm{F}+\mathrm{F}^{\prime}=1$

Or
2 a) Convert the following expressions into sum of products and product of sums:

$$
\begin{array}{ll}
\text { i. } & \left(\mathrm{AB}+\mathrm{C}^{\prime} \mathrm{D}\right)\left(\mathrm{B}+\mathrm{C}^{\prime} \mathrm{D}\right) \\
\text { ii. } & \mathrm{X}^{\prime}+\mathrm{x}\left(\mathrm{x}+\mathrm{y}^{\prime}\right)\left(\mathrm{y}+\mathrm{z}^{\prime}\right)
\end{array}
$$

b) Draw the logic diagram to the following Boolean expressions without simplifying them:
i. $\quad \mathrm{BC}^{\prime}+\mathrm{AB}+\mathrm{ACD}$
ii. $\quad(\mathrm{A}+\mathrm{B})(\mathrm{C}+\mathrm{D})\left(\mathrm{A}^{\prime}+\mathrm{B}+\mathrm{D}\right)$

UNIT-II

3 a) Simplify the following Boolean function, using three-variable maps:
$F(x, y, z)=\sum(0,2 \cdot 3,4,6)$
b) Draw the circuit diagram of a 2-bit adder-subtractor and explain the function?

Or
4 a) Draw the block diagram of a full adder using two half adders and one OR gate.
b) Simplify the following Boolean expression, using three-variable maps:
$F(x, y, z)=x y+x y^{\prime} z^{\prime}+x^{\prime} y z^{\prime}$

UNIT-III

5 a) Design a combinational circuit that will accomplish the multiplication of the 2-bit binary number $X_{1} X_{0}$ by the 2-bit binary number $\mathrm{Y}_{1} \mathrm{Y}_{0}$. Is a two-level circuit the most economical? Justify?
b) What is advantage of a PROM compared to the PLA and PALs? Explain.

Or

6 a) Construct a 4 X16 decoder using five 2 X4 decoder modules. Explain with a neat schematic diagram.
b) What is the difference between a digital multiplexer and a digital demultiplexer?

Explain with an example?

UNIT-IV

7 a) Define D and T flip-flop with the help of truth table? Also design the D and T flipflop using JK flip flop?
b) Design a 4-bit asynchronous decade counter and draw the timing diagram.

Or

8 a) Draw the timing diagram of a 4-bit asynchronous counter and explain?
b) Draw and explain briefly an Asynchronous Mod-12 counter?

UNIT-V

9 a) Design a 5 state sequential machine whose sequential states are: $000,001,010,110$, $111,000 \ldots$. Assume initial state is 000 .
b) Explain the design procedure of synchronous sequential circuits.

Or

10 a) Why state reduction is necessary in sequential circuit design? What are the different methods of state reduction? Explain implication table method of state reduction with an example.
b) A synchronous counter is controlled by two input signals A and B. The counter does not operate, if $\mathrm{A}=0$ and $\mathrm{B}=0$. When $\mathrm{A}=0$ and $\mathrm{B}=1$, the counter operates as a \bmod four counter. If $\mathrm{A}=1$ and $\mathrm{B}=0$ the counter operates as a mod eight counter. Draw an FSM chart and design a circuit?

II B. Tech II Semester Regular Examinations, June/July - 2022
 DIGITAL ELECTRONICS
 (Electrical and Electronics Engineering)

Max. Marks: 70

Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks

UNIT-I

1 a) i. Subtract (12.50) ${ }_{10}$ from (18.75) $)_{10}$ in binary using 1 's complement method?
ii. Find the Gray Code number for the given 12-bit binary number 100110100111 and explain the procedure?
b) Implement the Boolean function $F=x y+x^{\prime} y^{\prime}+y^{\prime} z$ with AND, OR and inverter gates

Or

2 a) Express the following sum-of -Products function $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(3,5,9,11,15)$ in to POS form.
b) Show that the dual of the exclusive-OR is equal to its complement?

UNIT-II

3 a) Simplify the following Boolean expression, using any two mapping techniques.
$F(x, y, z)=x y+x^{\prime} y^{\prime} z z^{\prime}+x^{\prime} y z '$
b) Implement 8 -bit adder circuit using full adders as the building blocks.

Or

4 a) Simplify the Boolean function, $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(0,1,4,5,7,15)+\mathrm{d}(10,11,14)$. Explain the procedure?
b) Draw the logic diagram of a half subtractor using NOR gates only.

UNIT-III

5 a) Implement the following function using a multiplexer of proper $\operatorname{size} . \mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=$
$\sum \mathrm{m}(0,1,2,3,4,9,13,14,15)$
b) Give the logic circuit schematic to realize a BCD to decimal decoder.

Or

6 a) Design a 4 bit comparator using PROMs?
b) What is a difference between an encoder and a decoder? Explain with an example.

UNIT-IV

7 a) What are the differences in a Master Slave JK FF, a Positive edge triggered JK-FF and a Negative edge triggered JK-FF?
b) Draw a logic diagram of 4-bit ripple counter and explain its operation with timing diagram and sequence table. What modification is required to use as a decade counter?

Or

8 a) Write the difference between the following counters
(a) Synchronous counter and asynchronous counter
(b) Binary UP and binary DOWN counter
b) Draw the logic circuit diagram of universal shift register and explain its operation with functional table.

UNIT-V

9 a) Write design procedure of a finite state machine.
b) Design a sequential circuit (finite state machine) for Table given below using D flipflops.Assume two inputs are A and B, outputs of the sequential circuit are outputs of Dflip-flops, present state $=S$, Next State=S*. Consider the four states of the sequentialcircuit are $S_{0}=00, S_{1}=01, S_{2}=10$ and $S_{3}=11$.

	Inputs (AB)			
$\begin{array}{\|c\|} \hline \text { Present } \\ \text { state }(S) \end{array}$	00	01	10	11
S_{0}	S_{1}	S_{0}	S_{0}	S_{1}
S_{1}	S_{2}	S_{0}	S_{0}	S_{2}
S_{2}	S_{3}	S_{0}	S_{0}	S_{3}
S_{3}	S_{1}	S_{0}	S_{0}	S_{1}
	Next State (S^{*})			

Or

10 a) Draw the state diagram and state table of a up-down counter. Design the Up-Down counter using Tflip-flops.
b) The state diagram of a sequential circuit is given in Fig. Draw the state table for Fig. Assume two inputs are A and B , output is O .

II B. Tech II Semester Regular Examinations, June/July - 2022 DIGITAL ELECTRONICS
 (Electrical and Electronics Engineering)

Time: 3 hours
Max. Marks: 70
Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks

~~~~~~~~~~~~~~~~~~~~~~~~~

\section*{UNIT-I}

1 a) Generate a Hamming Code for the given 4-bit message word 1001 and rewrite the entire message in Hamming Code.
b) Obtain the truth table of the function, and express function in sum-of-minterms and product of max terms \(Y(x y+z)(y+x z)\). Or

2 a) For the Function \(F=x y^{\prime} z+x^{\prime} y^{\prime} z+w^{\prime} x y+w x^{\prime} y+w x y\), draw the logic diagram using original Boolean expression and also for simplified expression. Compare the total number of gates for the two.
b) Convert the given number "B2FA" to binary and Find the 2's complement of the result?

\section*{UNIT-II}

3 a) Simplify the Boolean function, using five-variable maps
\(F(A, B, C, D, E)=A^{\prime} B^{\prime} C E^{\prime}+B^{\prime} C^{\prime} D^{\prime} E^{\prime}+A^{\prime} B^{\prime} D^{\prime}+B^{\prime} C D^{\prime}+A^{\prime} C D+A^{\prime} B D\)
b) Design a full-subtractor circuit with three inputs \(\mathrm{x}, \mathrm{y}, \mathrm{B}_{\mathrm{in}}\) and two outputs Diff and \(\mathrm{B}_{\text {out }}\). Where \(\mathrm{B}_{\text {in }}\) is the input borrow, \(\mathrm{B}_{\text {out }}\) is the output borrow and Diff is the difference.

\section*{Or}

4 a) Draw a logic diagram using only two-input NOR gates to implement the following function: \(\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=(\mathrm{A} \oplus \mathrm{B})^{\prime}(\mathrm{C} \oplus \mathrm{D})\)
b) Design the Excess-3 code adder circuit.

\section*{UNIT-III}

5 a) Implement the following logic function with 2 nX 1 multiplexer, where n is the number of variables in the function. \(\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{S}(4,5,6,7,8,13,14,15)\).
b) Why does a carry look-a-head generator give a fast adder? How much is the speed up for an 8 -stage circuit? Explain.

\section*{Or}

6 a) What is a difference between a decoder and a digital demultiplexer? Explain their truth table differences by taking an example.
b) Construct a 4 X16 decoder using two \(3 \times 8\) decoder modules and additional logic. Show the schematic diagram neatly.

\section*{UNIT-IV}

7 a) How does a SR latch differ from a gated RS latch?
b) Write the count sequence of 3-bit binary ripple counter. Design a 3-bit ripple counter using J-K flip-flops

Or

8 a) Design a 4-bit binary UP/DOWN ripple counter with a control input for UP/DOWN counting
b) Design a PIPO, which is a 4-bit buffer register with parallel in (loading) and parallel output (storing)

\section*{UNIT-V}

9 a) Write difference between Mealy and Moore machines in detail.
b) Design a sequential circuit for the state Table using D flip-flops. Assume twoinputs are A and B , output of the sequential circuit is O , present state of D flip-flops \(=\) \(\mathrm{Q}_{1} \mathrm{Q}_{0}\), Next State of D flip-flops \(=\left(\mathrm{Q}_{1}{ }^{*} \mathrm{Q}_{0}{ }^{*}\right)\).
\begin{tabular}{|c|c|c|c|c|}
\cline { 2 - 5 } \multicolumn{1}{c|}{} & \multicolumn{4}{c|}{ Inputs \((\boldsymbol{A B})\)} \\
\hline \begin{tabular}{c} 
Present \\
state \(\left(\boldsymbol{Q}_{\mathbf{1}} \boldsymbol{Q}_{\mathbf{0}}\right)\)
\end{tabular} & \(\mathbf{0 0}\) & \(\mathbf{0 1}\) & \(\mathbf{1 0}\) & \(\mathbf{1 1}\) \\
\hline 00 & \(01 / 0\) & \(00 / 0\) & \(00 / 0\) & \(01 / 0\) \\
\hline 01 & \(10 / 1\) & \(00 / 1\) & \(00 / 1\) & \(10 / 1\) \\
\hline 10 & \(11 / 0\) & \(00 / 0\) & \(00 / 0\) & \(11 / 0\) \\
\hline 11 & \(01 / 1\) & \(00 / 1\) & \(00 / 1\) & \(01 / 1\) \\
\cline { 2 - 5 } & \multicolumn{4}{c|}{ Next State \(\left(Q_{1}{ }^{*} Q_{0}{ }^{*}\right) /\) Output \((O)\)} \\
\hline
\end{tabular}

10 a) A sequential circuit has two inputs X and CLOCK and one output O . Incoming data are examined in consecutive groups of three digits and the output \(\mathrm{O}=1\) for the following three input sequences 000,010 and 111. Draw a state diagram and implement the sequential circuit using J-K flip-flops.
b) Define Finite state machine for the state table using D Flip-Flops.
\begin{tabular}{|c|c|c|c|c|}
\cline { 2 - 5 } \multicolumn{1}{c|}{} & \multicolumn{5}{c|}{ Inputs \((\boldsymbol{A B})\)} \\
\hline \begin{tabular}{c} 
Present state \\
\(\left(\boldsymbol{Q}_{1} \boldsymbol{Q}_{0}\right)\)
\end{tabular} & \(\mathbf{0 0}\) & \(\mathbf{0 1}\) & \(\mathbf{1 0}\) & \(\mathbf{1 1}\) \\
\hline 00 & 01 & 00 & 00 & 01 \\
\hline 01 & 10 & 00 & 00 & 10 \\
\hline 10 & 11 & 00 & 00 & 11 \\
\hline 11 & 01 & 00 & 00 & 01 \\
\hline \multicolumn{5}{c|}{ Next State \(\left(Q_{1}{ }^{*} Q_{0}{ }^{*}\right)\)} \\
\hline
\end{tabular}~~~~~~~~~~~~~~~~~~~~~~~~~

