II B. Tech II Semester Supplementary Examinations, February - 2022 DIGITAL ELECTRONICS

(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks:					
		Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks	_		
1	a)	Express the Boolean function F(p, q, r)=(pq+r)(q+pr) in a sum of minterms and	[7M]		
	b)	a product of maxterms. Obtain the 9's and 10's complement of (389.61) ₁₀ .	[8M]		
		Or			
2	a)	What do you understand by minterm and maxterm. What is the difference between canonical form and standard form?	[7M]		
	b)	Realize 2 input X-OR gate and 2 input X-NOR gates using NOR gates only.	[8M]		
3	a)	Prove the following identity (i) $AB + A (B + C) + B (B + C) = B + AC$ (ii) $AB + A'B + A'B' = A' + B$ (iii) $AB'C + A'BC + ABC = AC + BC$	[7M]		
	b)	Simplify the following function using K – map, F = ABCD+AB'C'D'+AB'C+AB.	[8M]		
		Or			
4	a)	Explain Boolean algebra with Boolean theorems.	[7M]		
	b)	Simplify the function $F(A,B,C,D,E)=\Sigma m(0,2,4,6,9,11,13,15,17,21,25,27,29,31)$ using Karnaugh map.	[8M]		
5	a)	draw logic diagram of a look-ahead carry generator and describe 4-bit full adder with look-ahead carry in detail.	[7M]		
	b)	Implement the following function with a multiplexer: $F(A, B, C, D) = \sum (0, 1, 3, 4, 8, 9, 15)$.	[8M]		
		Or			
6	a)	Implement Boolean function $F(A,B,C,D)=\Sigma m(0,1,3,4,8,9,15)$ using 8x1 multiplexer.	[7M]		
	b)	With neat sketch explain 4-bit binary subtractor.	[8M]		
7	a)	Convert S R flip flop into J K flip flop and also draw excitation table.	[7M]		
	b)	Explain BCD ripple counter with logic diagram and timing diagram.	[8M]		
		Or			
8	a)	Explain Master- Slave flip flop with circuit design.	[7M]		
	b)	Design a counter that has repeated sequence of six states 0, 1, 2, 4, 5, 6 using JK flip flop.	[8M]		

9 a) With neat sketch explain about Moore FSM.

[7M]

b) For the given mealy machine transition table Convert into moore machine.

Present State	Next State				
Frescut State	a = 0		a = 1		
	State	Output	State	Output	
→ q0	q3	0	q11	1	
q10	q0	1	q3	0	
q11	q0	1	q3	0	
q20	q21	1	q20	0	
q21	q21	1	q20	0	
q3	q10	0	q0	1	

[8M]

Or

10 a) Compare Mealy and Moore machine.

[7M]

b) With neat sketch explain State diagram, state table and state assignment.

[8M]