

II B. Tech II Semester Supplementary Examinations, December - 2022 DIGITAL ELECTRONICS

(Electrical and Electronics Engineering)

Time: 3 hoursMax. Marks				
		Answer any FIVE Questions, each Question from each unit All Questions carry Equal Marks		
1	a)	State and Explain the DeMorgan's Theorem and Consensus Theorem	[7M]	
	b)	Realize 2 input X-OR and X-NOR gates using only NOR gates and only NAND gates	[7M]	
•		Or	503 6 3	
2	a)	Convert the following numbers i) $(615)_{10} = ()_{16}$ ii) $(214)_{16} = ()_8$ iii) $(0.8125)_{10} = ()_2$ iv) $(658.825)_{10} = ()_4$	[8M]	
	b)	Express the Boolean function $F(p, q, r, s)=s(p'+q)+q's$ in a sum of minterms and a product of maxterms.	[6M]	
		UNIT-II		
3	a)	Perform BCD addition and Excess-3 addition for the following numbers 0001 0011 and 0010 0110.	[6M]	
	b)	With a neat diagram, explain in detail about the working of a 4 bit look ahead adder. [Also mention its advantages over conventional adder.		
		Or		
4	a)	Simplify the Boolean function $F(A, B, C, D) = \sum_{i=1}^{n} (0, 2, 2, 7, 11, 12, 14, 15)$ using tabulation method.	[7M]	
	b)	Explain full- Adder. Implement a full- Adder using half Adders.	[7M]	
		UNIT-III		
5	a)	Obtain an 8×1 multiplexer with a dual 4-line to 1-line multiplexers having separate enable inputs but common selection lines. Use block diagram construction.	[7M]	
	b)	Design a 4-bit magnitude comparator with three outputs : A>B, A=B, A <b< td=""><td>[7M]</td></b<>	[7M]	
		Or		
6	a)	Design BCD to grey code converter and draw the logic diagram.	[7M]	
	b)	Use PLA with 3 inputs, 4 AND terms and two outputs to implement the following Boolean functions $F1(A,B,C) = \sum m(3,5,6,7)$ and $F2(A,B,C) = \sum m(1,2,3,4)$	[7M]	

1 of 2

UNIT-IV

7	a) Realize JK Flip flop using SR Flip flop and derive their characteristic equations.		[7M]						
	b)	Design 4-bit Asynchronous counter using JK flip flop with its timing diagram.	[7M]						
		Or							
8	a)	Write difference between Combinational & Sequential circuits.	[7M]						
	b)	Build a 4bit universal shift register using D flipflops and multiplexers.	[7M]						
UNIT-V									
9	a)	Design 4-stage twisted ring counter with circuit diagram, state transition diagram and state table.	[7M]						
	b)	A clocked sequential circuit with single input x and single output z produces output $z=1$, whenever the input x completes the sequence 1011 and overlapping is allowed: i) Obtain the state diagram ii) Obtain its minimum state table and design circuit with D flip flop.	[7M]						
	Or								
10	a)	Explain capabilities and limitations of finite state machine.	[7M]						

b) Draw state diagram in Mealy model for the following state table. [7M]

Present	Next state		Output	
state	X=0	X=1	X=0	X=1
A	А	С	0	1
В	D	A	0	0
С	С	Α	1	0
D	В	D	1	0