Code No: R2031463

III B. Tech I Semester Regular Examinations, Dec/Jan -2022-23 DESIGN AND ANALYSIS OF ALGORITHMS

(Common to CSE (CS), IOTCSIBCT, CSE(IOT), CS)

Time: 3 hours

Max. Marks: 70

Answer any **FIVE** Questions **ONE** Question from **Each unit** All Questions Carry Equal Marks

<u>UNIT-I</u>

1.	a) b)	Explain in brief about Asymptotic notations with examples. Define Time and Space Complexity, and calculate the time space complexity for addition of two matrices.	[7M] [7M]
2.	a)	In what way amortized analysis is used for performance analysis of algorithms? Explain.	[7M]
	b)	Explain the method of determining the complexity of a procedure by the step count approach. Illustrate with an example.	[7M]
3.	a)	Write the merge sort algorithm and discuss its efficiency.	[7M]
	b)	Explain the general method of Divide and Conquer. (OR)	[7M]
4.	a)	Write the algorithm for finding pivot element in quick sort algorithm and analyze its time complexity.	[7M]
	b)	Explain How Master's theorem is useful for solving recurrence relations.	[7M]
_		<u>UNIT-III</u>	
5.	a)	Explain 0/1 knapsack problem with respect to dynamic	[7M]
	b)	Derive the recursive formulas of optimal cost Binary search tree based on dynamic programming.	[7M]
6.	a)	(OR) Write an algorithm to explain matrix chain multiplication problem	[7M]
	b)	Explain in detail about Multi stage graphs. UNIT-IV	[7M]
7.	a)	Relate Hamiltonian cycle with travelling sales person problem and also give the backtracking solution that finds all Hamiltonian cycles for any directed or undirected graph.	[7M]
	b)	Draw the portion of state space tree generated by recursive backtracking algorithm for sum of subsets problem with an example.	[7M]
0		(OR)	[/7]]
8.	aj	Explain the Graph – coloring problem. And draw the state space tree for $m = 3$ colors and $n = 4$ vertices complete graph.	[111]
	b)	b) Define Backtracking. Draw the state space tree for solution of 4-queens problem.	[7M]

1 of 2