

(Common to EEE,ECE)

Tim	ie: 3	hours Max. Marks	s: 70					
		Answer any FIVE Questions ONE Question from Each unit All Questions Carry Equal Marks *****						
	UNIT-I							
1.	a)	Explain the Booth's algorithm for multiplication of signed two's	[7M]					
	b)	Complement numbers. Discuss about Error Detection codes. (OR)	[7M]					
2.	a)	What is the simplified sum of product form for the Boolean expression: $(A + B' + C')(A + B' + C)(A + B + C')$	[7M]					
	b)	What do you mean by Universal gate? Show that both NAND gate and NOR gate are universal gates.	[7M]					
2		<u>UNIT-II</u> Design the full subtractor circuit with using Deceder and evaluin	[7]]					
5.	aj	the working principle						
	b)	Implement the following function Σ (0,1,3,4,8,9,10) using (i)Decoder (ii)Multiplexer	[7M]					
		(OR)						
4.	a)	Differentiate between combinational logic and sequential logic.	[7M]					
	b)	List some applications of sequential logic. List the types of flip-flop. Describe the clocked RS flip-flop.	[7M]					
UNIT-III								
5.	a)	Define micro-operation and explain the four Basic types of shift micro-operation and their variants	[7M]					
	b)	Discuss about shift micro operations.	[7M]					
		(OR)						
6.	a)	What is register transfer language? With suitable examples, explain the representation of instructions in register transfer	[7M]					
	h)	Describe the phases of instruction cycle briefly	[7M]					
	0)	UNIT-IV	[, 11]					
7.	a)	What is the purpose of addressing modes? Explain various	[7M]					
	b)	Define and discuss the types of registers.	[7M]					
8.	a)	What is address sequencing? Explain the conditional branching and mapping of instruction in it	[7M]					
	b)	What are the microinstructions needed for the fetch routine? Explain.	[7M]					

Code No: R203105K

R20

SET - 1

UNIT-V

- 9. a) List the functionalities of I/O interface. Draw and explain a [7M] combined input/output interface circuit.
 - b) What do you mean by associative memory? Give applications of [7M] associative memory.

(OR)

- 10. a) Explain daisy chain priority interrupt. [7M]
 - b) Demonstrate the mechanism of DMA [7M]

(Common to EEE,ECE)

Time: 3 hours

Max. Marks: 70

Answer any **FIVE** Questions **ONE** Question from **Each unit** All Questions Carry Equal Marks

<u>UNIT-I</u>

- 1. a) Explain various number systems and number representations [7M] used in system.
 - b) Explain any two ways of adding decimal numbers. [7M]

(OR)

- 2. a) Simplify the Boolean function: $F(X,Y,Z) = \sum(0, 2, 4, 5, 6)$ using [7M] three variable K-map.
 - b) State and prove De-Morgan's theorem 1st and 2nd with logic [7M] gates and truth table.

UNIT-II

- 3. a) Design a full adder with truth table and logic gates. [7M]
 - b) How does a J-K flip flop differs from an S-R flip flop in its basic [7M] operations? Explain.

(OR)

- 4. a) What do you mean by triggering of flip flop? Define state table, [7M] state diagram and state equation.
 - b) What is Multiplexer? Draw its block diagram and explain its [7M] working principle.

<u>UNIT-III</u>

- 5. a) Consider the arithmetic statement X= (A+B)*(C+D). Explain the [7M] influence of number of addresses on computer program.
 - b) What is the difference between a serial and parallel transfer? [7M] Explain how to convert serial data to parallel and parallel data to serial. What type of register is needed?

(OR)

- 6. a) What do you mean by shift registers? Mention the different types [7M] of shift register.
 - b) Discuss about logic micro operations. [7M]

<u>UNIT-IV</u>

- 7. a) With neat sketch explain the design of control unit of basic [7M] computer.
 - b) Write the format of the micro instruction and micro operations [7M] for the control memory.

(OR)

- 8. a) Define microinstruction and micro program. Write an example [7M] for micro program
 - b) Distinguish between micro programmed and hardwired control [7M] unit.

|"|'||||"|"|||||

Code No: R203105K

(R20)

(SET - 2)

UNIT-V

- 9. a) Differentiate Isolated I/O and memory mapped I/O. [7M]
 - b) Explain various mapping procedures of cache memory with an [7M] example.

(OR)

- 10. a) "RAID disks offers excellent performance and large & reliable [7M] storage"- Justify this statement through various levels.
 - b) Write short notes on serial communication. [7M]

(Common to EEE,ECE)

Time: 3 hours

Max. Marks: 70

[7M]

[7M]

Answer any **FIVE** Questions **ONE** Question from **Each unit** All Questions Carry Equal Marks

<u>UNIT-I</u>

- 1. a) Dividend A=01110 Divisor B=10001. Explain flowchart for divide [7M] operation
 - b) Define (r -1)'s complement and r's complement. [7M]

(OR)

- 2. a) Demonstrate the procedure for obtaining product-of-sums using [7M] k-maps?
 - b) State and prove commutative laws, associative laws and [7M] distributive law using logic gate and truth table.

UNIT-II

- 3. a) What do you mean by full adder and full subtractor? Design a [7M] half subtractor using only NOR gates.
 - b) What is State reduction table? How JK flip flop can convert into [7M] a D-flip flop?

(OR)

- 4. a) Differentiate between a MUX and a DEMUX. Draw a logic circuit [7M] of 8*1 multiplexer.
 - b) Differentiate between Synchronous Sequential circuit and [7M] Asynchronous Sequential Circuit. What do you mean by D-flip-flop?

UNIT-III

- 5. a) What are the functional units of a computer system? Explain the [7M] way of handling information by each of them.
 - b) What is register transfer notation? Write and explain these [7M] notations to three-address, two-address, single address and zero-address instruction types.

(OR)

- 6. a) Discuss in detail about various Arithmetic micro operations? [7M]
 - b) Briefly write about instruction codes.

<u>UNIT-IV</u>

- 7. a) Explain with neat diagram the address selection for control [7M] memory.
 - b) Give a brief note on general register organization. [7M]

(OR)

- 8. a) Formulate a mapping procedure that provides eight consecutive [7M] microinstructions for each routing. The operation code has six bits and the control memory has 2048 words.
 - b) Explain instruction format?

1"|'||||"|"'|||||

R20

SET - 3

UNIT-V

- 9. a) Define Virtual Memory. Explain the process of converting virtual [7M] addresses to physical addresses with a neat diagram.
 - b) Explain different types of I/O communication techniques with [7M] merits and demerits.

(OR)

- 10. a) Explain in detail about Asynchronous data transfer. [7M]
 - b) What is direct memory transfer? Give an overview and the block [7M] diagram of a DMA controller.

((Common to EEE,ECE)

Tin	Time: 3 hours Max. Marks:					
		Answer any FIVE Questions ONE Question from Each unit All Questions Carry Equal Marks				
		UNIT-I				
1.	a)	Convert the (256) ₁₀ into following codes i) Binary Coded Decimal (BCD) ii) Excess 3 codes iii) Grav code	[7M]			
	b)	Discuss about Error Correction codes. (OR)	[7M]			
2.	a)	Using Boolean identities, reduce the given Boolean expression:	[7M]			
		F(X, Y, Z) = X'Y + YZ' + YZ + XY'Z'				
	b)	What is a logic gate? What are the types of basic gate? Explain.	[7M]			
2	-)	<u>UNIT-II</u> Frantain design Descedance of statistic Consult with	[7]]			
3.	a)	suitable example.				
	b)	What is encoder? Design a 3 to 8 line decoder using two 2 to 4 line decoder and explain it.	[7M]			
	,	(UR)				
4.	a)	What is Demultiplexer? Draw its block diagram and explain its working principle.	[7M]			
	b)	What is master-slave flip-flop? Explain master slave J-K flip-flop.	[7M]			
	<u>UNIT-III</u>					
5.	a)	List and explain computer types with their applications in real world environment.	[7M]			
	b)	What do you mean by register transfer language? What are the uses of register transfer language?	[7M]			
6.	a)	Write about various general purpose registers involved in the	[7M]			
	b)	Explain the mapping from instruction code to micro instruction address. Give the first micro instruction for the 0010, 1011 and 1111.	[7M]			
		<u>UNIT-IV</u>				
7.	a)	Write the format of the micro instruction and micro operations for the control memory	[7M]			
	b)	Define and discuss the differences between hardwired control unit and micro programmed control unit.	[7M]			
8.	a)	What are addressing modes? Give an overview of the addressing	[7M]			
	b)	Explain the data transfer and manipulation instructions? 1 of 2	[7M]			

No: R203105K	R20	(SET - 4)

UNIT-V

[7M]
[7M]
[7M]

Code