

II B. Tech II Semester Regular Examinations, August/September - 2021 COMPLEX VARIABLES & STATISTICAL METHODS

Tiı	ne: 3	(Mechanical Engineering) 3 hours Max. Marks: 75	5
		Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks	_
1	a)	Show that $f(z) = \begin{cases} \frac{x^2 y^5 (x+iy)}{x^4 + y^{10}}, & z \neq 0 \\ 0, & z = 0 \end{cases}$ is not analytic at $z = 0$, although	(8M)
	b)	the Cauchy-Riemann equations are satisfied at the origin. Find the analytic function $f(z) = u + iv$ where $u = e^x \cos y$.	(7M)
2	a)	Or Integrate $f(z) = x^2 + ixy$ from $A(1, 1) to B(2, 8)$ along	(8M)
	b)	the curve $x = t$, $y = t^3$. Use Cauchy's integral formula to evaluate $\int_C \frac{e^{2z}}{(z-1)(z-2)} dz$ where C is the	(7M)
3	a) b)	circle $ z = 3$. Find Taylor's expansion of $f(z) = \frac{2z^3 + 1}{z^2 + z}$ about the point $z = i$. Find the Laurent series of $f(z) = \frac{7z - 2}{(z^2 + z^2)^2}$ in the region $1 < z+1 < 3$.	(8M) (7M)
4	a)	Determine the poles of the function $f(z) = \frac{z^2}{(z-1)^2(z+2)}$ and the residue at	(8M)
	b)	each pole. Use residue theorem to evaluate $\int_{-\infty}^{\infty} \frac{x^2}{(x^2+1)(x^2+4)} dx$.	(7M)
5	a)	In a Certain City, 40 percent of the people consider themselves Conservatives, 35 percent consider themselves to be Liberals, and 25 percent consider themselves to be Independents. During a Particular election, 45 Percent of Conservatives voted, 40 percent of the Liberals voted and 60 percent of the Independents are voted. If a randomly selected person voted, find the probability that the voter is Conservative?	(8M)
	b)	A discrete random variable X has the following probability distribution Value of X 0 1 2 3 4 5 6 P(X = x) k 3k 5k 7k 9k 11k 13k (i) Find the value of 'k'. (ii) Find $P(X < 4), P(3 < X \le 6)$ and $P(X \ge 5)$ (iii) Find the distribution function of X.	(7M)

Or

Code No: R1922031 R19 SE					
6	a)	Find the mean and variance of the Poisson distribution.	(8M)		
	b)	Calculate the mean and S.D of a normal distribution in which 31% are under 45 and 8% are over 64.	(7M)		
7	a)	Define Population and sample with examples.	(8M)		
	b)	Explain Point and Interval estimations.	(7M)		
Or					
8	a)	Determine a 95% confidence interval for the mean of a normal distribution with variance $\sigma^2 = 0.25$, using a sample of $n = 100$ values with mean $\bar{x} = 212.3$.	(8M)		
	b)	Explain <i>t</i> -distribution.	(7M)		
9	a)	Explain the test procedure for small sample test concerning mean.			
	b)	In a random sample of 100 tube lights produced by company A, the mean life time of tube light is 1190 hours with standard deviation of 90 hours. Also in a random sample of 75 tube lights from company B the mean life time is 1230 hours with standard deviation of 120 hours. Is there a difference between the mean lifetimes of the two brands of tube lights at a significance level of 0.05?	(8M)		
		Or	(7M)		
10	a)	In a study to estimate the proportion of residents in a certain city and its suburbs who favor the construction of a nuclear power plant, it is found that 63 of 100	(8M)		

- (8M)
 <li
 - b) The mean life of 10 electric motors was found to be 1450 hrs with a S.D. of 423 (7M) hrs. A second sample of 17 motors chosen from a different batch showed a mean life of 1280 hrs with a S.D. of 398 hrs. Is there a significant difference between the means of the two samples? Use a 0.01 level of significance.

<u>Note</u> : - Statistical tables are required