JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech in CSE (ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING) III & IV YEAR COURSE STRUCTURE & TENTATIVE SYLLABUS (R18)

Applicable From 2020-21 Admitted Batch

III YEAR I SEMESTER

S. No.	Course Code	Course Title	L	т	Ρ	Credits
1		Design and Analysis of Algorithms	3	0	0	3
2		Machine Learning	3	0	0	3
3		Computer Networks	3	0	0	3
4		Compiler Design	3	0	0	3
5		Professional Elective - I	3	0	0	3
6		Professional Elective - II	3	0	0	3
7		Machine Learning Lab	0	0	3	1.5
8		Computer Networks Lab	0	0	3	1.5
9		Advanced Communication Skills Lab	0	0	2	1
10		Intellectual Property Rights	3	0	0	0
		Total Credits	21	0	8	22

III YEAR II SEMESTER

S. No.	Course Code	Course Title	L	Т	Ρ	Credits
1		Artificial Intelligence	3	1	0	4
2		DevOps	3	1	0	4
3		Natural Language Processing	3	1	0	4
4		Professional Elective – III	3	0	0	3
5		Open Elective - I	3	0	0	3
6		Artificial Intelligence and Natural Language Processing Lab	0	0	3	1.5
7		DevOps Lab	0	0	3	1.5
8		Professional Elective - III Lab	0	0	2	1
9		Environmental Science	3	0	0	0
		Total Credits	18	3	8	22

IV YEAR I SEMESTER

S. No.	Course Code	Course Title		т	Ρ	Credits
1		Neural Networks & Deep Learning		0	0	3
2		Reinforcement Learning	2	0	0	2
3		Professional Elective - IV		0	0	3
4		Professional Elective - V	3	0	0	3
5		Open Elective - II	3	0	0	3
6		Deep Learning Lab	0	0	2	1
7		Industrial Oriented Mini Project/ Summer Internship	0	0	0	2*
8		Seminar	0	0	2	1
9		Project Stage - I	0	0	6	3
		Total Credits	14	0	10	21

IV YEAR II SEMESTER

S. No.	Course Code	Course Title	L	т	Р	Credits
1		Organizational Behaviour	3	0	0	3
2		Professional Elective - VI	3	0	0	3
3		Open Elective - III	3	0	0	3
4		Project Stage - II	0	0	14	7
		Total Credits	9	0	14	16

***Note:** Industrial Oriented Mini Project/ Summer Internship is to be carried out during the summer vacation between 6th and 7th semesters. Students should submit report of Industrial Oriented Mini Project/ Summer Internship for evaluation.

MC - Environmental Science – Should be Registered by Lateral Entry Students Only. MC – Satisfactory/Unsatisfactory.

Professional Elective-I

Graph Theory
Introduction to Data Science
Web Programming
Image Processing
Computer Graphics

Professional Elective - II

Software Testing Methodologies
Information Retrieval Systems
Pattern Recognition
Computer Vision and Robotics
Data Warehousing and Business Intelligence

Professional Elective - III

Internet of Things
Data Mining
Scripting Languages
Mobile Application Development
Cryptography and Network Security

[#] Courses in PE - III and PE - III Lab must be in 1-1 correspondence.

Professional Elective -IV

Quantum Computing
Expert Systems
Cloud Computing
Game Theory
Mobile Computing

Professional Elective - V

Social Network Analysis
Federated Machine Learning
Augmented Reality & Virtual Reality
Web Security
Ad-hoc & Sensor Networks

Professional Elective – VI

Speech and Video Processing
Robotics Process Automation
Randomized Algorithms
Cognitive Computing
Semantic Web

NEURAL NETWORKS AND DEEP LEARNING

B.Tech. IV Year I Sem.

Course Objectives:

- To introduce the foundations of Artificial Neural Networks
- To acquire the knowledge on Deep Learning Concepts
- To learn various types of Artificial Neural Networks
- To gain knowledge to apply optimization strategies

Course Outcomes:

- Ability to understand the concepts of Neural Networks
- Ability to select the Learning Networks in modeling real world systems
- Ability to use an efficient algorithm for Deep Models
- Ability to apply optimization strategies for large scale applications

UNIT-I

Artificial Neural Networks Introduction, Basic models of ANN, important terminologies, Supervised Learning Networks, Perceptron Networks, Adaptive Linear Neuron, Back-propagation Network. Associative Memory Networks. Training Algorithms for pattern association, BAM and Hopfield Networks.

UNIT-II

Unsupervised Learning Network- Introduction, Fixed Weight Competitive Nets, Maxnet, Hamming Network, Kohonen Self-Organizing Feature Maps, Learning Vector Quantization, Counter Propagation Networks, Adaptive Resonance Theory Networks. Special Networks-Introduction to various networks.

UNIT - III

Introduction to Deep Learning, Historical Trends in Deep learning, Deep Feed - forward networks, Gradient-Based learning, Hidden Units, Architecture Design, Back-Propagation and Other Differentiation Algorithms

UNIT - IV

Regularization for Deep Learning: Parameter norm Penalties, Norm Penalties as Constrained Optimization, Regularization and Under-Constrained Problems, Dataset Augmentation, Noise Robustness, Semi-Supervised learning, Multi-task learning, Early Stopping, Parameter Typing and Parameter Sharing, Sparse Representations, Bagging and other Ensemble Methods, Dropout, Adversarial Training, Tangent Distance, tangent Prop and Manifold, Tangent Classifier

UNIT - V

Optimization for Train Deep Models: Challenges in Neural Network Optimization, Basic Algorithms, Parameter Initialization Strategies, Algorithms with Adaptive Learning Rates, Approximate Second-Order Methods, Optimization Strategies and Meta-Algorithms

Applications: Large-Scale Deep Learning, Computer Vision, Speech Recognition, Natural Language Processing

TEXT BOOKS:

- 1. Deep Learning: An MIT Press Book By Ian Goodfellow and Yoshua Bengio and Aaron Courville
- 2. Neural Networks and Learning Machines, Simon Haykin, 3rd Edition, Pearson Prentice Hall.

L	Т	Ρ	С
3	0	0	3

REINFORCEMENT LEARNING

B.Tech. IV Year I Sem.

L	Т	Ρ	С
2	0	0	2

Course Objectives: Knowledge on fundamentals of reinforcement learning and the methods used to create agents that can solve a variety of complex tasks.

Course Outcomes

- 1. Understand basics of RL.
- 2. Understand RL Framework and Markov Decision Process.
- 3. Analyzing ning through the use of Dynamic Programming and Monte Carlo.
- 4. Understand TD(0) algorithm, TD(λ) algorithm.

UNIT - I

Basics of probability and linear algebra, Definition of a stochastic multi-armed bandit, Definition of regret, Achieving sublinear regret, UCB algorithm, KL-UCB, Thompson Sampling.

UNIT - II

Markov Decision Problem, policy, and value function, Reward models (infinite discounted, total, finite horizon, and average), Episodic & continuing tasks, Bellman's optimality operator, and Value iteration & policy iteration

UNIT - III

The Reinforcement Learning problem, prediction and control problems, Model-based algorithm, Monte Carlo methods for prediction, and Online implementation of Monte Carlo policy evaluation

UNIT - IV

Bootstrapping; TD(0) algorithm; Convergence of Monte Carlo and batch TD(0) algorithms; Model-free control: Q-learning, Sarsa, Expected Sarsa.

UNIT - V

n-step returns; $TD(\lambda)$ algorithm; Need for generalization in practice; Linear function approximation and geometric view; Linear $TD(\lambda)$. Tile coding; Control with function approximation; Policy search; Policy gradient methods; Experience replay; Fitted Q Iteration; Case studies.

TEXT BOOKS:

- 1. "Reinforcement learning: An introduction," First Edition, Sutton, Richard S., and Andrew G. Barto, MIT press 2020.
- 2. "Statistical reinforcement learning: modern machine learning approaches," First Edition, Sugiyama, Masashi. CRC Press 2015.

- 1. "Bandit algorithms," First Edition, Lattimore, T. and C. Szepesvári. Cambridge University Press. 2020.
- 2. "Reinforcement Learning Algorithms: Analysis and Applications," Boris Belousov, Hany Abdulsamad, Pascal Klink, Simone Parisi, and Jan Peters First Edition, Springer 2021.
- 3. Alexander Zai and Brandon Brown "Deep Reinforcement Learning in Action," First Edition, Manning Publications 2020.

QUANTUM COMPUTING (Professional Elective – IV)

B.Tech. IV Year I Sem.

Course Objectives:

- 1. To introduce the fundamentals of quantum computing
- 2. The problem-solving approach using finite dimensional mathematics

Course Outcomes:

- 1. Understand basics of quantum computing
- 2. Understand physical implementation of Qubit
- 3. Understand Quantum algorithms and their implementation
- 4. Understand the Impact of Quantum Computing on Cryptography

UNIT - I

Introduction to Essential Linear Algebra: Some Basic Algebra, Matrix Math, Vectors and Vector Spaces, Set Theory. **Complex Numbers:** Definition of Complex Numbers, Algebra of Complex Numbers, Complex Numbers Graphically, Vector Representations of Complex Numbers, Pauli Matrice, Transcendental Numbers.

UNIT - II

Basic Physics for Quantum Computing: The Journey to Quantum, Quantum Physics Essentials, Basic Atomic Structure, Hilbert Spaces, Uncertainty, Quantum States, Entanglement.

Basic Quantum Theory: Further with Quantum Mechanics, Quantum Decoherence, Quantum Electrodynamics, Quantum Chromodynamics, Feynman Diagram Quantum Entanglement and QKD, Quantum Entanglement, Interpretation, QKE.

UNIT - III

Quantum Architecture: Further with Qubits, Quantum Gates, More with Gates, Quantum Circuits, The D-Wave Quantum Architecture. **Quantum Hardware:** Qubits, How Many Qubits Are Needed? Addressing Decoherence, Topological Quantum Computing, Quantum Essentials.

UNIT - IV

Quantum Algorithms: What Is an Algorithm? Deutsch's Algorithm, Deutsch-Jozsa Algorithm, Bernstein-Vazirani Algorithm, Simon's Algorithm, Shor's Algorithm, Grover's Algorithm.

UNIT - V

Current Asymmetric Algorithms: RSA, Diffie-Hellman, Elliptic Curve. **The Impact of Quantum Computing on Cryptography:** Asymmetric Cryptography, Specific Algorithms, Specific Applications.

TEXT BOOKS:

- 1. Nielsen M. A., Quantum Computation and Quantum Information, Cambridge University Press
- 2. Dr. Chuck Easttom, Quantum Computing Fundamentals, Pearson

- 1. Quantum Computing for Computer Scientists by Noson S. Yanofsky and Mirco A. Mannucci
- 2. Benenti G., Casati G. and Strini G., Principles of Quantum Computation and Information, Vol. Basic Concepts. Vol. Basic Tools and Special Topics, World Scientific.
- 3. Pittenger A. O., An Introduction to Quantum Computing Algorithms.

L	Т	Ρ	С
3	0	0	3

EXPERT SYSTEMS (Professional Elective – IV)

B.Tech. IV Year I Sem.

L	Т	Ρ	С
3	0	0	3

Course Objectives:

- 1. Understand the basic techniques of artificial intelligence.
- 2. Understand the Non-monotonic reasoning and statistical reasoning.

Course Outcomes:

- 1. Apply the basic techniques of artificial intelligence.
- 2. Discuss the architecture of an expert system and its tools.
- 3. Understand the importance of building an expert systems.
- 4. Understand various problems with an expert systems.

UNIT - I

Introduction to AI programming languages, Blind search strategies, Breadth-first – Depth-first – Heuristic search techniques Hill Climbing – Best first – A Algorithms AO* algorithm – game tress, Minmax algorithms, game playing – Alpha-beta pruning.

UNIT - II

Knowledge representation issues predicate logic – logic programming Semantic nets- frames and inheritance, constraint propagation; Representing Knowledge using rules, Rules-based deduction systems.

UNIT - III

Introduction to Expert Systems, Architecture of expert systems, Representation and organization of knowledge, Basics characteristics, and types of problems handled by expert systems.

UNIT - IV

Expert System Tools: Techniques of knowledge representations in expert systems, knowledge engineering, system-building aids, support facilities, stages in the development of expert systems.

UNIT - V

Building an Expert System: Expert system development, Selection of the tool, Acquiring Knowledge, Building process.

Problems with Expert Systems: Difficulties, common pitfalls in planning, dealing with domain experts, difficulties during development.

TEXT BOOKS:

- 1. Elain Rich and Kevin Knight, "Artificial Intelligence", Tata McGraw-Hill, New Delhi.
- 2. Waterman D.A., "A Guide to Expert Systems", Addison Wesley Longman.

- 1. Stuart Russel and other Peter Norvig, "Artificial Intelligence A Modern Approach", Prentice-Hall.
- 2. Patrick Henry Winston, "Artificial Intelligence", Addison Wesley.
- 3. Patterson, Artificial Intelligence & Expert System, Prentice Hall India, 1999.
- 4. Hayes-Roth, Lenat, and Waterman: Building Expert Systems, Addison Wesley.
- 5. Weiss S.M. and Kulikowski C.A., "A Practical Guide to Designing Expert Systems", Rowman & Allanheld, New Jersey.

CLOUD COMPUTING (PROFESSIONAL ELECTIVE - IV)

B.Tech. IV Year I Sem.

- 1. A course on "Computer Networks"
- 2. A course on "Operating Systems"
- 3. A course on "Distributed Systems"

Course Objectives:

- This course provides an insight into cloud computing
- Topics covered include- distributed system models, different cloud service models, serviceoriented architectures, cloud programming and software environments, resource management.

Course Outcomes:

- Ability to understand various service delivery models of a cloud computing architecture.
- Ability to understand the ways in which the cloud can be programmed and deployed.
- Understanding cloud service providers.

UNIT - I

Computing Paradigms: High-Performance Computing, Parallel Computing, Distributed Computing, Cluster Computing, Grid Computing, Cloud Computing, Bio computing, Mobile Computing, Quantum Computing, Optical Computing, Nano computing.

UNIT - II

Cloud Computing Fundamentals: Motivation for Cloud Computing, The Need for Cloud Computing, Defining Cloud Computing, Definition of Cloud computing, Cloud Computing Is a Service, Cloud Computing Is a Platform, Principles of Cloud computing, Five Essential Characteristics, Four Cloud Deployment Models

UNIT - III

Cloud Computing Architecture and Management: Cloud architecture, Layer, Anatomy of the Cloud, Network Connectivity in Cloud Computing, Applications, on the Cloud, Managing the Cloud, Managing the Cloud Infrastructure Managing the Cloud application, Migrating Application to Cloud, Phases of Cloud Migration Approaches for Cloud Migration.

UNIT - IV

Cloud Service Models: Infrastructure as a Service, Characteristics of IaaS. Suitability of IaaS, Pros and Cons of IaaS, Summary of IaaS Providers, Platform as a Service, Characteristics of PaaS, Suitability of PaaS, Pros and Cons of PaaS, Summary of PaaS Providers, Software as a Service, Characteristics of SaaS, Suitability of SaaS, Pros and Cons of SaaS, Summary of SaaS Providers, Other Cloud Service Models.

UNIT V

Cloud Service Providers: EMC, EMC IT, Captiva Cloud Toolkit, Google, Cloud Platform, Cloud Storage, Google Cloud Connect, Google Cloud Print, Google App Engine, Amazon Web Services, Amazon Elastic Compute Cloud, Amazon Simple Storage Service, Amazon Simple Queue, service, Microsoft, Windows Azure, Microsoft Assessment and Planning Toolkit, SharePoint, IBM, Cloud Models, IBM Smart Cloud, SAP Labs, SAP HANA Cloud Platform, Virtualization Services Provided by SAP, Sales force, Sales Cloud, Service Cloud: Knowledge as a Service, Rack space, VMware, Manjra soft, Aneka Platform

L	Т	Ρ	С
3	0	0	3

TEXT BOOK:

1. Essentials of cloud Computing: K. Chandrasekhran, CRC press, 2014

- 1. Cloud Computing: Principles and Paradigms by Rajkumar Buyya, James Broberg and Andrzej M. Goscinski, Wiley, 2011.
- 2. Distributed and Cloud Computing, Kai Hwang, Geoffery C. Fox, Jack J. Dongarra, Elsevier, 2012.
- 3. Cloud Security and Privacy: An Enterprise Perspective on Risks and Compliance, Tim Mather, Subra Kumaraswamy, Shahed Latif, O'Reilly, SPD, rp 2011.

GAME THEORY (Professional Elective – IV)

B.Tech. IV Year I Sem.

L	Т	Ρ	С
3	0	0	3

Course Objectives: The course will explain in depth the standard equilibrium concepts (such as Nash equilibrium, Subgame-Perfect Nash Equilibrium, and others) in Game Theory.

Course Outcomes:

- 1. Understand the basic concepts of game theory and solutions
- 2. Understand different types of equilibrium interpretations
- 3. Understand and analyze knowledge and solution concepts
- 4. Analyze extensive games with perfect information

UNIT - I

Introduction- Game Theory, Games and Solutions Game Theory and the Theory of Competitive Equilibrium, Rational Behavior, The Steady State and Deductive Interpretations, Bounded Rationality Terminology and Notation. Nash Equilibrium- Strategic Games, Nash Equilibrium Examples Existence of a Nash Equilibrium, Strictly Competitive Games, Bayesian Games: Strategic Games with Imperfect Information.

UNIT - II

Mixed, Correlated, and Evolutionary Equilibrium - Mixed Strategy Nash Equilibrium, Interpretations of Mixed Strategy Nash Equilibrium, Correlated Equilibrium, Evolutionary Equilibrium, Rationalizability and Iterated Elimination of Dominated Actions -Rationalizability Iterated Elimination of Strictly Dominated Actions, Iterated Elimination of Weakly Dominated Actions.

UNIT - III

Knowledge and Equilibrium -A Model of Knowledge Common Knowledge, Can People Agree to Disagree? Knowledge and Solution Concepts, The Electronic Mail Game

UNIT - IV

Extensive Games with Perfect Information -Extensive Games with Perfect Information Subgame Perfect Equilibrium Two Extensions of the Definition of a Game The Interpretation of a Strategy, Two Notable Finite Horizon Games, Iterated Elimination of Weakly Dominated, Strategies Bargaining Games -Bargaining and Game Theory, A Bargaining Game of Alternating Offers Subgame Perfect Equilibrium Variations and Extensions.

UNIT - V

Repeated Games - The Basic Idea Infinitely Repeated Games vs.\ Finitely Repeated Games, Infinitely Repeated Games: Definitions Strategies as Machines Trigger Strategies: Nash Folk, Theorems Punishing for a Limited Length of Time: A Perfect Folk Theorem for the Limit of Means Criterion Punishing the Punisher: A Perfect Folk Theorem for the Overtaking Criterion, Rewarding Players Who Punish: A Perfect Folk Theorem for the Discounting Criterion The Structure of Subgame Perfect Equilibria Under the Discounting Criterion Finitely Repeated Game.

TEXT BOOKS:

- 1. A course in Game Theory, M. J. Osborne and A. Rubinstein, MIT Press
- 2. Game Theory, Roger Myerson, Harvard University Press
- 3. Game Theory, D. Fudenberg and J. Tirole, MIT Press

- 1. Theory of Games and Economic Behavior, J. von Neumann and O. Morgenstern, New York: John Wiley and Sons.
- 2. Games and Decisions, R.D. Luce and H. Raiffa, New York: John Wiley and Sons.
- 3. Game Theory, G. Owen, 2nd Edition, New York: Academic Press.

MOBILE COMPUTING (Professional Elective – IV)

B.Tech. IV Year I Sem.

L	Т	Ρ	С
3	0	0	3

Prerequisites: Computer Networks, Distributed Systems / Distributed Operating Systems

Course Objectives: To make the student understand the concept of mobile computing paradigm, its novel applications and limitations, the typical mobile networking infrastructure through a popular GSM protocol, the issues and solutions of various layers of mobile networks.

Course Outcomes:

- 1. Understand the concept of mobile computing paradigm, its novel applications and limitations.
- 2. Analyze and develop new mobile applications
- 3. Understand the protocols and platforms related to mobile environment
- 4. Classify data delivery mechanisms

UNIT - I

Introduction: Mobile Communications, Mobile Computing – Paradigm, Promises/Novel Applications and Impediments and Architecture; Mobile and Handheld Devices, Limitations of Mobile and Handheld Devices.

GSM – Services, System Architecture, Radio Interfaces, Protocols, Localization, Calling, Handover, Security, New Data Services, GPRS, CSHSD, DECT.

UNIT –II

(Wireless) Medium Access Control (MAC): Motivation for a specialized MAC (Hidden and exposed terminals, Near and far terminals), SDMA, FDMA, TDMA, CDMA, Wireless LAN/(IEEE 802.11) Mobile Network Layer: IP and Mobile IP Network Layers, Packet Delivery and Handover Management, Location Management, Registration, Tunneling and Encapsulation, Route Optimization, DHCP.

UNIT - III

Mobile Transport Layer: Conventional TCP/IP Protocols, Indirect TCP, Snooping TCP, Mobile TCP, Other Transport Layer Protocols for Mobile Networks.

Database Issues: Database Hoarding & Caching Techniques, Client-Server Computing & Adaptation, Transactional Models, Query processing, Data Recovery Process & QoS Issues.

UNIT - IV

Data Dissemination and Synchronization: Communications Asymmetry, Classification of Data Delivery Mechanisms, Data Dissemination, Broadcast Models, Selective Tuning and Indexing Methods, Data Synchronization – Introduction, Software, and Protocols

UNIT - V

Mobile Ad hoc Networks (MANETs): Introduction, Applications & Challenges of a MANET, Routing, Classification of Routing Algorithms, Algorithms such as DSR, AODV, DSDV, Mobile Agents, Service Discovery. **Protocols and Platforms for Mobile Computing:** WAP, Bluetooth, XML, J2ME, JavaCard, PalmOS, Windows CE, SymbianOS, Linux for Mobile Devices, Android.

TEXT BOOKS:

- 1. Jochen Schiller, "Mobile Communications", Addison-Wesley, Second Edition, 2009.
- 2. Raj Kamal, "Mobile Computing", Oxford University Press, 2007, ISBN: 0195686772

REFERENCE BOOK:

1. Asoke K Talukder, Hasan Ahmed, Roopa Yavagal Mobile Computing: Technology, Applications and Service Creation, McGraw Hill Education.

L T P C 3 0 0 3

SOCIAL NETWORK ANALYSIS (Professional Elective – V)

B.Tech. IV Year I Sem.

Prerequisites

- 1. A course on "Web Technologies".
- 2. A course on "Computer Networks".
- 3. A course on "Data Warehousing and Data Mining".

Course Objectives:

- 1. It introduces the concepts of social media
- 2. It provides the mechanisms for social network analysis
- 3. Includes the concepts that allow for better visualization and analysis of widely used services such as email, Wikis, Twitter, flickr, YouTube, etc.

Course Outcomes:

- 1. Ability to construct social network maps easily
- 2. Gain skills in tracking the content flow through the social media
- 3. Use NodeXL to perform social network analysis

UNIT - I:

Introduction: Social Media and Social Networks. **Social Media:** New Technologies of Collaboration. **Social Network Analysis:** Measuring, Mapping, and Modeling collections of Connections.

UNIT - II:

NodeXL, Layout, Visual Design, and Labeling, Calculating and Visualizing Network Metrics, Preparing Data and Filtering, Clustering and Grouping.

UNIT - III:

CASE STUDIES - I:

Email: The lifeblood of Modern Communication. **Thread Networks:** Mapping Message Boards and Email Lists. **Twitter:** Conversation, Entertainment and Information.

UNIT - IV:

CASE STUDIES - II: Visualizing and Interpreting Facebook Networks, WWW Hyperlink Networks

UNIT-V:

CASE STUDIES - III:

You Tube: Contrasting Patterns of Content Interaction, and Prominence. **Wiki Networks:** Connections of Creativity and Collaboration.

TEXT BOOKS:

- 1. Hansen, Derek, Ben Sheiderman, Marc Smith, Analyzing Social Media Networks with NodeXL: Insights from a Connected World, Morgan Kaufmann, 2011.
- 2. Avinash Kaushik, Web Analytics 2.0: The Art of Online Accountability, Sybex, 2009.

REFERENCE BOOK:

1. Marshall Sponder, Social Media Analytics: Effective Tools for Building, Interpreting and Using Metrics, 1st Edition, MGH, 2011.

FEDERATED MACHINE LEARNING (Professional Elective – V)

B.Tech. IV Year I Sem.

L T P C 3 0 0 3

Prerequisites: The prerequisite knowledge for this course includes machine learning, basic computer systems and basic programming skills.

Course Objectives

- 1. Understand the key concepts and issues behind Federated Learning
- 2. Get familiar with key theoretical results of Federated Learning

Course Outcomes

- 1. Knowledge of the basic concepts, architecture, and applications of FL.
- 2. Understanding of new research and application trends in FL.
- 3. Analyze horizontal federated learning
- 4. Understand the significance of Federated Learning for Vision, Language, and Recommendation

UNIT - I

Introduction: Motivation, Federated Learning as a Solution, The Definition of Federated Learning, Categories of Federated Learning, Current Development in Federated Learning, Research Issues in Federated Learning, Open-Source Projects, Standardization Efforts, The Federated AI Ecosystem Background: Privacy-Preserving Machine Learning, PPML and Secure ML, Threat and Security Models, Privacy Threat Models, Adversary and Security Models, Privacy Preservation Techniques, Secure Multi-Party Computation, Homomorphic Encryption, Differential Privacy.

UNIT - II

Distributed Machine Learning: Introduction to DML, The Definition of DML, DML Platforms, Scalability-Motivated DML, Large-Scale Machine Learning, Scalability-Oriented DML Schemes, Privacy-Motivated DML, Privacy-Preserving Decision Trees, Privacy-Preserving Techniques, Privacy-Preserving DML Schemes, Privacy-Preserving Gradient Descent, Vanilla Federated Learning, Privacy-Preserving Methods.

UNIT - III

Horizontal Federated Learning: The Definition of HFL, Architecture of HFL, The Client- Server Architecture, The Peer-to-Peer Architecture, Global Model Evaluation, The Federated Averaging Algorithm, Federated Optimization, The FedAvg Algorithm, The Secured FedAvg Algorithm, Improvement of the FedAvg Algorithm, Communication Efficiency, Client Selection Vertical Federated Learning: The Definition of VFL, Architecture of VFL, Algorithms of VFL, Secure Federated Linear Regression, Secure Federated Tree-Boosting.

UNIT - IV

Federated Transfer Learning: Heterogeneous Federated Learning, Federated Transfer Learning, The FTL Framework, Additively Homomorphic Encryption, The FTL Training Process, The FTL Prediction Process, Security Analysis, Secret Sharing-Based FTL Incentive Mechanism Design for Federated Learning: Paying for Contributions, Profit- Sharing Games, Reverse Auctions, A Fairness-Aware Profit Sharing Framework, Modeling Contribution, Modeling Cost, Modeling Regret, Modeling Temporal Regret, The Policy Orchestrator, Computing Payoff Weightage.

UNIT - V

Federated Learning for Vision, Language, and Recommendation: Federated Learning for Computer Vision, Federated CV, Federated Learning for NLP, Federated NLP, Federated Learning for

Recommendation Systems, Recommendation Model, Federated Recommendation System Federated Reinforcement Learning: Introduction to Reinforcement Learning, Policy, Reward, Value Function, Model of the Environment, RL Background Example, Reinforcement Learning Algorithms, Distributed Reinforcement Learning, Asynchronous Distributed Reinforcement Learning, Synchronous Distributed Reinforcement Learning, Synchronous Distributed Reinforcement Learning, Background and Categorization.

TEXT BOOK:

1. Federated Learning, Qiang Yang, Yang Liu, Yong Cheng, Yan Kang, Tianjian Chen, and Han Yu -Synthesis Lectures on Artificial Intelligence and Machine Learning 2019.

AUGMENTED REALITY AND VIRTUAL REALITY (Professional Elective – V)

B.Tech. IV Year I Sem.	L	т	Ρ	С
	3	0	0	3

Course objectives:

- 1. The objective of this course is to provide a foundation to the fast-growing field of AR and make the students aware of the various AR devices.
- 2. To give historical and modern overviews and perspectives on virtual reality. It describes the fundamentals of sensation, perception, technical and engineering aspects of virtual reality systems.

Course Outcomes:

- 1. Describe how AR systems work and list the applications of AR.
- 2. Understand and analyze the hardware requirement of AR.
- 3. Describe how VR systems work and list the applications of VR.
- 4. Understand the design and implementation of the hardware that enables VR systems tobe built.

UNIT - I:

Introduction to Augmented Reality: What Is Augmented Reality - Defining augmented reality, history of augmented reality, The Relationship Between Augmented Reality and Other Technologies-Media, Technologies, Other Ideas Related to the Spectrum Between Real and Virtual Worlds, applications of augmented reality Augmented Reality Concepts- How Does Augmented Reality Work? Concepts Related to Augmented Reality, Ingredients of an Augmented Reality Experience.

UNIT - II:

AR Devices & Components: AR Components – Scene Generator, Tracking system, monitoring system, display, Game scene. AR Devices – Optical See- Through HMD, Virtual retinal systems, Monitor bases systems, Projection displays, Video see-through systems.

UNIT - III:

Introduction to Virtual Reality: Defining Virtual Reality, History of VR, Human Physiology and Perception, Key Elements of Virtual Reality Experience, Virtual Reality System, Interface to the Virtual World-Input & output- Visual, Aural & Haptic Displays, Applications of Virtual Reality

UNIT - IV:

Representing the Virtual World: Representation of the Virtual World, Visual Representation in VR, Aural Representation in VR and Haptic Representation in VR, Case Study: GHOST (General Haptics Open Software Toolkit) software development toolkit.

UNIT - V:

Visual Perception & Rendering: Visual Perception - Perception of Depth, Perception of Motion, Perception of Color, Combining Sources of Information, Visual Rendering -Ray Tracing and Shading Models, Rasterization, Correcting Optical Distortions, Improving Latency and Frame Rates.

TEXT BOOKS:

- 1. Allan Fowler-AR Game Developmentll, 1st Edition, A press Publications, 2018, ISBN 978-1484236178
- 2. Augmented Reality: Principles & Practice by Schmalstieg / Hollerer, Pearson Education India; First edition (12 October 2016), ISBN-10: 9332578494

REFERENCE BOOKS:

1. Virtual Reality, Steven M. LaValle, Cambridge University Press, 2016.

- 2. Understanding Virtual Reality: Interface, Application and Design, William R Sherman and Alan B Craig, (The Morgan Kaufmann Series in Computer Graphics)". Morgan Kaufmann Publishers, San Francisco, CA, 2002.
- 3. Developing Virtual Reality Applications: Foundations of Effective Design, Alan B Craig, William R Sherman and Jeffrey D Will, Morgan Kaufmann, 2009.
- 4. Designing for Mixed Reality, Kharis O'Connell Published by O'Reilly Media, Inc., 2016, ISBN: 9781491962381.
- 5. Sanni Siltanen- Theory and applications of marker-based augmented reality. Julkaisija Utgivare Publisher. 2012. ISBN 978-951-38-7449-0.
- 6. Gerard Jounghyun Kim, "Designing Virtual Systems: The Structured Approach", 2005.

WEB SECURITY (Professional Elective – V)

B.Tech. IV Year I Sem.

L	Т	Ρ	С
3	0	0	3

Course Objectives:

- Give an Overview of information security
- Give an overview of Access control of relational databases

Course Outcomes: Students should be able to

- Understand the Web architecture and applications
- Understand client side and service side programming
- Understand how common mistakes can be bypassed and exploit the application
- Identify common application vulnerabilities

UNIT - I

The Web Security, The Web Security Problem, Risk Analysis and Best Practices. Cryptography and the Web: Cryptography and Web Security, Working Cryptographic Systems and Protocols, Legal Restrictions on Cryptography, Digital Identification.

UNIT - II

The Web's War on Your Privacy, Privacy-Protecting Techniques, Backups and Antitheft, Web Server Security, Physical Security for Servers, Host Security for Servers, Securing Web Applications.

UNIT - III

Database Security: Recent Advances in Access Control, Access Control Models for XML, Database Issues in Trust Management and Trust Negotiation, Security in Data Warehouses and OLAP Systems.

UNIT - IV

Security Re-engineering for Databases: Concepts and Techniques, Database Watermarking for Copyright Protection, Trustworthy Records Retention, Damage Quarantine and Recovery in Data Processing Systems, Hippocratic Databases: Current Capabilities and Future Trends.

UNIT - V

Privacy in Database Publishing: A Bayesian Perspective, Privacy-enhanced Location-based Access Control, Efficiently Enforcing the Security and Privacy Policies in a Mobile Environment.

TEXT BOOKS:

- 1. Web Security, Privacy and Commerce Simson G Arfinkel, Gene Spafford, O'Reilly.
- 2. Handbook on Database security applications and trends Michael Gertz, Sushil Jajodia

AD-HOC & SENSOR NETWORKS (Professional Elective - V)

B.Tech. IV Year I Sem.

L	Т	Ρ	С
3	0	0	3

Prerequisites

- 1. A course on "Computer Networks"
- 2. A course on "Mobile Computing"

Course Objectives:

- 1. To understand the concepts of sensor networks
- 2. To understand the MAC and transport protocols for ad hoc networks
- 3. To understand the security of sensor networks
- 4. To understand the applications of adhoc and sensor networks

Course Outcomes:

- 1. Ability to understand the state-of-the-art research in the emerging subject of Ad Hoc and Wireless Sensor Networks
- 2. Ability to solve the issues in real-time application development based on ASN.
- 3. Ability to conduct further research in the domain of ASN

UNIT - I

Introduction to Ad Hoc Networks - Characteristics of MANETs, Applications of MANETs and Challenges of MANETs.

Routing in MANETs - Criteria for classification, Taxonomy of MANET routing algorithms, Topologybased routing algorithms-**Proactive**: DSDV; **Reactive**: DSR, AODV; Hybrid: ZRP; Position-based routing algorithms-**Location Services**-DREAM, Quorum-based; **Forwarding Strategies:** Greedy Packet, Restricted Directional Flooding-DREAM, LAR.

UNIT - II

Data Transmission - Broadcast Storm Problem, **Rebroadcasting Schemes**-Simple-flooding, Probability-based Methods, Area-based Methods, Neighbor Knowledge-based: SBA, Multipoint Relaying, AHBP. **Multicasting: Tree-based:** AMRIS, MAODV; **Mesh-based:** ODMRP, CAMP; **Hybrid:** AMRoute, MCEDAR.

UNIT - III

Geocasting: Data-transmission Oriented-LBM; Route Creation Oriented-GeoTORA, MGR. TCP over Ad Hoc TCP protocol overview, TCP and MANETs, Solutions for TCP over Ad hoc

UNIT - IV

Basics of Wireless, Sensors and Lower Layer Issues: Applications, Classification of sensor networks, Architecture of sensor network, Physical layer, MAC layer, Link layer, Routing Layer.

UNIT - V

Upper Layer Issues of WSN: Transport layer, High-level application layer support, Adapting to the inherent dynamic nature of WSNs, Sensor Networks and mobile robots.

TEXT BOOKS:

- 1. Ad Hoc and Sensor Networks Theory and Applications, Carlos Corderio Dharma P. Aggarwal, World Scientific Publications, March 2006, ISBN 981–256–681–3.
- 2. Wireless Sensor Networks: An Information Processing Approach, Feng Zhao, Leonidas Guibas, Elsevier Science, ISBN 978-1-55860-914-3 (Morgan Kauffman).

DEEP LEARNING LAB

B.Tech. IV Year I Sem.

L	Т	Ρ	С
0	0	2	1

Course Objectives:

- 1. To Build the Foundation of Deep Learning.
- 2. To Understand How to Build the Neural Network.
- 3. To enable students to develop successful machine learning concepts.

Course Outcomes:

- 1. Upon the Successful Completion of the Course, the Students would be able to:
- 2. Learn the Fundamental Principles of Deep Learning.
- 3. Identify the Deep Learning Algorithms for Various Types of Learning Tasks in various domains.
- 4. Implement Deep Learning Algorithms and Solve Real-world problems.

LIST OF EXPERIMENTS:

- 1. Setting up the Spyder IDE Environment and Executing a Python Program
- 2. Installing Keras, Tensorflow and Pytorch libraries and making use of them
- 3. Applying the Convolution Neural Network on computer vision problems
- 4. Image classification on MNIST dataset (CNN model with Fully connected layer)
- 5. Applying the Deep Learning Models in the field of Natural Language Processing
- 6. Train a sentiment analysis model on IMDB dataset, use RNN layers with LSTM/GRU notes
- 7. Applying the Autoencoder algorithms for encoding the real-world data
- 8. Applying Generative Adversial Networks for image generation and unsupervised tasks.

TEXT BOOKS:

- 1. Deep Learning by Ian Goodfellow, Yoshua Bengio and Aaron Courville, MIT Press.
- 2. The Elements of Statistical Learning by T. Hastie, R. Tibshirani, and J. Friedman, Springer.
- 3. Probabilistic Graphical Models. Koller, and N. Friedman, MIT Press.

REFERENCES:

- 1. Bishop, C.M., Pattern Recognition and Machine Learning, Springer, 2006.
- 2. Yegnanarayana, B., Artificial Neural Networks PHI Learning Pvt. Ltd, 2009.
- 3. Golub, G.H., and Van Loan, C.F., Matrix Computations, JHU Press, 2013.
- 4. Satish Kumar, Neural Networks: A Classroom Approach, Tata McGraw Hill Education, 2004.

EXTENSIVE READING:

- 1. http://www.deeplearning.net
- 2. https://www.deeplearningbook.org/
- 3. https://developers.google.com/machine-learning/crash-course/ml-intro
- 4. www.cs.toronto.edu/~fritz/absps/imagenet.pdf
- 5. http://neuralnetworksanddeeplearning.com/