JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech. in CSE (COMPUTER NETWORKS) III & IV YEAR COURSE STRUCTURE & TENTATIVE SYLLABUS (R18)

Applicable From 2020-21 Admitted Batch

III YEAR I SEMESTER

S. No.	Course Code	Course Title	L	т	Р	Credits
1		Internetworking with TCP/IP	3	0	0	3
2		Database Management Systems	3	0	0	3
3		Design and Analysis of Algorithms	3	0	0	3
4		Finite Automata and Compiler Design	3	0	0	3
5		Professional Elective - I	3	0	0	3
6		Professional Elective - II	3	0	0	3
7		Database Management Systems Lab	0	0	3	1.5
8		Internetworking with TCP/IP Lab	0	0	3	1.5
9		Advanced Communication Skills Lab	0	0	2	1
10		Intellectual Property Rights	3	0	0	0
		Total Credits	21	0	8	22

III YEAR II SEMESTER

S. No.	Course Code	Course Title	L	т	Ρ	Credits
1		Software Engineering	3	1	0	4
2		Network Programming	3	1	0	4
3		Web Technologies	3	1	0	4
4		Professional Elective – III	3	0	0	3
5		Open Elective - I	3	0	0	3
6		Software Engineering Lab	0	0	3	1.5
7		Network Programming Lab	0	0	3	1.5
8		Web Technologies Lab	0	0	2	1
9		Environmental Science	3	0	0	0
		Total Credits	18	3	8	22

IV YEAR I SEMESTER

S. No.	Course Code	Course Title	L	т	Р	Credits
1		Cloud Computing	3	0	0	3
2		Cryptography and Network Security	2	0	0	2
3		Professional Elective – IV	3	0	0	3
4		Professional Elective – V	3	0	0	3
5		Open Elective – II	3	0	0	3
6		Cryptography and Network Security Lab	0	0	2	1
7		Industrial Oriented Mini Project/ Summer Internship	0	0	0	2*
8		Seminar	0	0	2	1
9		Project Stage – I	0	0	6	3
		Total Credits	14	0	10	21

S. No.	Course Code	Course Title	L	Т	Ρ	Credits
1		Organizational Behaviour	3	0	0	3
2		Professional Elective –VI	3	0	0	3
3		Open Elective-III	3	0	0	3
4		Project Stage – II	0	0	14	7
		Total Credits	9	0	14	16

IV YEAR II SEMESTER

***Note:** Industrial Oriented Mini Project/ Summer Internship is to be carried out during the summer vacation between 6th and 7th semesters. Students should submit a report of Industrial Oriented Mini Project/ Summer Internship for evaluation.

MC – Environmental Science – Should be Registered by Lateral Entry Students Only. MC – Satisfactory/Unsatisfactory.

Professional Elective-I

Advanced Computer Architecture
Distributed Systems
Distributed Databases
Optimization Techniques
DevOps

Professional Elective – II

Image Processing
Advanced Computer Networks
Data Analytics
Mobile Application Security
Game Theory

Professional Elective – III

Mobile Application Development
Network Administration
Natural Language Processing
Cyber Forensics
Machine Learning

Professional Elective -IV

Neural Networks & Deep Learning
Wireless Networks
Information Retrieval Systems
Wireless Security
Network Management Systems and Operations

Professional Elective - V

Real Time Systems
Ad-hoc & Sensor Networks
Distributed Storage Networks
Blockchain Technology
Software Process & Project Management

Professional Elective – VI

Parallel and Distributed Computing
Internet of Things
5G Technologies
Cyber Laws & Ethics
Network Protocols

ORGANIZATIONAL BEHAVIOUR

B.Tech. IV Year II Sem.

L	Т	Ρ	С
3	0	0	3

Course Objectives: The objective of the course is to provide the students with the conceptual framework and the theories underlying Organizational Behavior.

Course Outcomes:

- 1. Demonstrate the applicability of analyzing the complexities associated with management of individual behavior in the organization.
- 2. Analyze the complexities associated with management of the group behavior in the organization.
- 3. Demonstrate how the organizational behavior can integrate in understanding the motivation (why) behind behavior of people in the organization.

UNIT - I:

Introduction to OB - Definition, Nature and Scope – Environmental and organizational context – Impact of IT, globalization, Diversity, Ethics, culture, reward systems and organizational design on Organizational Behaviour. Cognitive Processes-I: Perception and Attribution: Nature and importance of Perception – Perceptual selectivity and organization – Social perception – Attribution Theories – Locus of control –Attribution Errors –Impression Management.

UNIT-II:

Cognitive Processes-II: Personality and Attitudes – Personality as a continuum – Meaning of personality - Johari Window and Transactional Analysis - Nature and Dimension of Attitudes – Job satisfaction and organizational commitment-Motivational needs and processes- Work-Motivation Approaches Theories of Motivation- Motivation across cultures - Positive organizational behaviour: Optimism – Emotional intelligence – Self-Efficacy.

UNIT - III:

Dynamics of OB-I: Communication – types – interactive communication in organizations – barriers to communication and strategies to improve the follow of communication - Decision Making: Participative decision-making techniques – creativity and group decision making. Dynamics of OB –II Stress and Conflict: Meaning and types of stress –Meaning and types of conflict - Effect of stress and intra-individual conflict - strategies to cope with stress and conflict.

UNIT - IV:

Dynamics of OB –III Power and Politics: Meaning and types of power – empowerment - Groups Vs. Teams – Nature of groups – dynamics of informal groups – dysfunctions of groups and teams – teams in modern work place.

UNIT - V:

Leading High performance: Job design and Goal setting for High performance- Quality of Work Life-Socio technical Design and High-performance work practices - Behavioural performance management: reinforcement and punishment as principles of Learning –Process of Behavioural modification -Leadership theories - Styles, Activities and skills of Great leaders.

- 1. Luthans, Fred: Organizational Behaviour 10/e, McGraw-Hill, 2009
- 2. McShane: Organizational Behaviour, 3e, TMH, 2008
- 3. Nelson: Organizational Behaviour, 3/e, Thomson, 2008.

- 4. Newstrom W. John & Davis Keith, Organisational Behaviour-- Human Behaviour at Work, 12/e, TMH, New Delhi, 2009.
- 5. Pierce and Gardner: Management and Organisational Behaviour: An Integrated perspective, Thomson, 2009.
- 6. Robbins, P. Stephen, Timothy A. Judge: Organisational Behaviour, 12/e, PHI/Pearson, New Delhi, 2009.
- 7. Pareek Udai: Behavioural Process at Work: Oxford & IBH, New Delhi, 2009.
- 8. Schermerhorn: Organizational Behaviour 9/e, Wiley, 2008.
- 9. Hitt: Organizational Behaviour, Wiley, 2008
- 10. Aswathappa: Organisational Behaviour, 7/e, Himalaya, 2009
- 11. Mullins: Management and Organisational Behaviour, Pearson, 2008.
- 12. McShane, Glinow: Organisational Behaviour--Essentials, TMH, 2009.
- 13. Ivancevich: Organisational Behaviour and Management, 7/e, TMH, 2008.

L T P C 3 0 0 3

PARALLEL AND DISTRIBUTED COMPUTING (Professional Elective – VI)

B.Tech. IV Year II Sem.

Course Objectives:

- 1. To learn core ideas behind parallel and distributed computing.
- 2. To explore the methodologies adopted for parallel and distributed environments.
- 3. To understand the networking aspects of parallel and distributed computing.
- 4. To provide an overview of the computational aspects of parallel and distributed computing.
- 5. To learn parallel and distributed computing models.

Course Outcomes:

- 1. Explore the methodologies adopted for parallel and distributed environments.
- 2. Analyze the networking aspects of Distributed and Parallel Computing.
- 3. Explore the different performance issues and tasks in parallel and distributed computing.
- 4. Tools usage for parallel and distributed computing.
- 5. Understanding high performance computing techniques.

UNIT - I

Parallel and Distributed Computing— Introduction- Benefits and Needs- Parallel and Distributed Systems- Programming Environment- Theoretical Foundations - Parallel Algorithms— Introduction-Parallel Models and Algorithms- Sorting - Matrix Multiplication- Convex Hull- Pointer Based Data Structures.

UNIT - II

Synchronization- Process Parallel Languages- Architecture of Parallel and Distributed Systems-Consistency and Replication- Security- Parallel Operating Systems.

UNIT - III

Management of Resources in Parallel Systems- Tools for Parallel Computing- Parallel Database Systems and Multimedia Object Servers.

UNIT - IV

Networking Aspects of Distributed and Parallel Computing- Process- Parallel and Distributed Scientific Computing.

UNIT - V

High-Performance Computing in Molecular Sciences- Communication Multimedia Applications for Parallel and Distributed Systems- Distributed File Systems.

TEXT BOOKS:

- 1. Jacek Błażewicz, et al., "Handbook on parallel and distributed processing", Springer Science & Business Media, 2013.
- 2. Andrew S. Tanenbaum, and Maarten Van Steen, "Distributed Systems: Principles and Paradigms". Prentice-Hall, 2007.

- 1. George F.Coulouris, Jean Dollimore, and Tim Kindberg, "Distributed systems: concepts and design", Pearson Education, 2005.
- 2. Gregor Kosec and Roman Trobec, "Parallel Scientific Computing: Theory, Algorithms, and Applications of Mesh Based and Meshless Methods", Springer, 2015.

INTERNET OF THINGS (Professional Elective – VI)

B.Tech. IV Year II Sem.

Course Objectives:

- 1. To introduce the terminology, technology and its applications
- 2. To introduce the concept of M2M (machine to machine) with necessary protocols
- 3. To introduce the Python Scripting Language which is used in many IoT devices
- 4. To introduce the Raspberry PI platform, that is widely used in IoT applications
- 5. To introduce the implementation of web-based services on IoT devices

Course Outcomes:

- 1. Interpret the impact and challenges posed by IoT networks leading to new architectural models.
- 2. Compare and contrast the deployment of smart objects and the technologies to connect them to the network.
- 3. Appraise the role of IoT protocols for efficient network communication.
- 4. Elaborate the need for Data Analytics and Security in IoT.
- 5. Illustrate different sensor technologies for sensing real world entities and identify the applications of IoT in Industry.

UNIT - I

Introduction to Internet of Things –Definition and Characteristics of IoT, Physical Design of IoT – IoT Protocols, IoT communication models, Iot Communication APIs IoT enabaled Technologies – Wireless Sensor Networks, Cloud Computing, Big data analytics, Communication protocols, Embedded Systems, IoT Levels and Templates Domain Specific IoTs – Home, City, Environment, Energy, Retail, Logistics, Agriculture, Industry, health and Lifestyle

UNIT - II

IoT and M2M – Software defined networks, network function virtualization, difference between SDN and NFV for IoT Basics of IoT System Management with NETCOZF, YANG- NETCONF, YANG, SNMP NETOPEER

UNIT - III

Introduction to Python - Language features of Python, Data types, data structures, Control of flow, functions, modules, packaging, file handling, data/time operations, classes, Exception handling Python packages - JSON, XML, HTTPLib, URLLib, SMTPLib

UNIT - IV

IoT Physical Devices and Endpoints - Introduction to Raspberry PI-Interfaces (serial, SPI, I2C) Programming – Python program with Raspberry PI with focus of interfacing external gadgets, controlling output, reading input from pins.

UNIT - V

IoT Physical Servers and Cloud Offerings – Introduction to Cloud Storage models and communication APIs Webserver – Web server for IoT, Cloud for IoT, Python web application framework Designing a RESTful web API

TEXT BOOKS:

- 1. Internet of Things A Hands-on Approach, Arshdeep Bahga and Vijay Madisetti, Universities Press, 2015, ISBN: 9788173719547
- 2. Getting Started with Raspberry Pi, Matt Richardson & Shawn Wallace, O'Reilly (SPD), 2014, ISBN: 9789350239759.

L	Т	Ρ	С
3	0	0	3

5G TECHNOLOGIES (Professional Elective – VI)

B.Tech. IV Year II Sem.

L	Т	Ρ	С
3	0	0	3

Course Objectives: Knowledge on the concepts of 5G and 5G technology drivers. Understand 5G network architecture, components, features and their benefits.

Course Outcomes:

- 1. Understand 5G and 5G Broadband Wireless Communications.
- 2. Understand 5G wireless Propagation Channels.
- 3. Understand the significance of transmission and Design Techniques for 5G.
- 4. Analyze Device-to-device (D2D) and machine-to-machine (M2M) type communications.
- 5. Learn Massive MIMO propagation channel models.

UNIT - I:

Overview of 5G Broadband Wireless Communications: Evolution of mobile technologies 1G to 4G (LTE, LTEA, LTEA Pro), An Overview of 5G requirements, Regulations for 5G, Spectrum Analysis and Sharing for 5G.

UNIT - II:

The 5G wireless Propagation Channels: Channel modeling requirements, propagation scenarios and challenges in the 5G modeling, Channel Models for mmWave MIMO Systems., 3GPP standards for 5G

UNIT - III:

Transmission and Design Techniques for 5G: Basic requirements of transmission over 5G, Modulation Techniques – Orthogonal frequency division multiplexing (OFDM), generalized frequency division multiplexing (GFDM), filter bank multi-carriers (FBMC) and universal filtered multi-carrier (UFMC), Multiple Accesses Techniques – orthogonal frequency division multiple accesses (OFDMA), generalized frequency division multiple accesses (GFDMA), non-orthogonal multiple accesses (NOMA).

UNIT - IV:

Device-to-device (D2D) and machine-to-machine (M2M) type communications – Extension of 4G D2D standardization to 5G, radio resource management for mobile broadband D2D, multi-hop and multi-operator D2D communications.

UNIT V:

Millimeter-wave Communications – spectrum regulations, deployment scenarios, beam-forming, physical layer techniques, interference and mobility management, Massive MIMO propagation channel models, Channel Estimation in Massive MIMO, Massive MIMO with Imperfect CSI, Multi-Cell Massive MIMO, Pilot Contamination, Spatial Modulation (SM).

TEXT BOOKS:

- 1. Martin Sauter "From GSM From GSM to LTE–Advanced Pro and 5G: An Introduction to Mobile Networks and Mobile Broadband", Wiley-Blackwell.
- 2. Afif Osseiran, Jose. F. Monserrat, Patrick Marsch, "Fundamentals of 5G Mobile Networks", Cambridge University Press.

- 1. Jonathan Rodriguez, "Fundamentals of 5G Mobile Networks", John Wiley & Sons.
- 2. Amitabha Ghosh and Rapeepat Ratasuk "Essentials of LTE and LTE-A", Cambridge University Press.
- 3. Athanasios G.Kanatos, Konstantina S.Nikita, Panagiotis Mathiopoulos, "New Directions in Wireless Communication Systems from Mobile to 5G", CRC Press.
- 4. Theodore S. Rappaport, Robert W. Heath, Robert C. Danials, James N. Murdock "Millimeter Wave Wireless Communications", Prentice Hall Communications.

CYBER LAWS AND ETHICS (Professional Elective – VI)

B.Tech. IV Year II Sem.	LTPC
	3 0 0 3
Course Objectives	

Course Objectives

- 1. To make the students understand the types of roles they are expected to play in the society as practitioners of the civil engineering profession.
- 2. To develop some ideas of the legal and practical aspects of their profession.

Course Outcomes

- 1. Understand the importance of professional practice, Law and Ethics in their personal lives and professional careers.
- 2. Learn the rights and responsibilities as an employee, team member and a global citizen.
- 3. Understand the information processing and secure program administration.
- 4. Understand the fundamentals of Organizational and Human security standards.

UNIT - I

Introduction to Computer Security: Definition, Threats to security, Government requirements, Information Protection and Access Controls, Computer security efforts, Standards, Computer Security mandates and legislation, Privacy considerations, International security activity.

UNIT - II

Secure System Planning and administration, Introduction to the orange book, Security policy requirements, accountability, assurance and documentation requirements, Network Security, The Red book and Government network evaluations.

UNIT - III

Information security policies and procedures: Corporate policies- Tier 1, Tier 2 and Tier3 policies - process management-planning and preparation-developing policies-asset classification policy-developing standards.

UNIT - IV

Information security: fundamentals-Employee responsibilities- information classification- Information handling- Tools of information security- Information processing-secure program administration.

UNIT - V

Organizational and Human Security: Adoption of Information Security Management Standards, Human Factors in Security- Role of information security professionals.

TEXT BOOKS:

- Debby Russell and Sr. G. T Gangemi, "Computer Security Basics (Paperback)", 2nd Edition, O' Reilly Media, 2006.
- 2. Thomas R. Peltier, "Information Security policies and procedures: A Practitioner's Reference", 2nd Edition Prentice Hall, 2004.

- 1. Kenneth J. Knapp, "Cyber Security and Global Information Assurance: Threat Analysis and Response Solutions", IGI Global, 2009.
- Thomas R Peltier, Justin Peltier and John blackley," Information Security Fundamentals", 2nd Edition, Prentice Hall, 1996
- 3. Jonathan Rosenoer, "Cyber law: the Law of the Internet", Springer-verlag, 1997 James Graham, "Cyber Security Essentials" Averbach Publication T & F Group.

NETWORK PROTOCOLS (Professional Elective – VI)

B.Tech. IV Year II Sem.	L	т	Ρ	С
	3	0	0	3

Course Objectives

- 1. To understand the basic concepts of data communication, layered model, protocols and interworking between computer networks and switching components in telecommunication systems.
- 2. To understand the functioning of an ATM.
- 3. Discuss the nature, uses and implications of internet technology

Course Outcomes

- 1. Understand the basics of data communication, networking, internet and their importance.
- 2. Understand the different internet protocols and their functions.
- 3. Understand the services and features of various Application protocols
- 4. Discuss Internetworking architectures and Firewalls,

UNIT - I

Data Communication networks & Open System Standards: Data Communication Networks, Protocols & Standards, Open Systems, ISO Reference Model, Switching & Switching Elements.

UNIT - II

Multiplexing: FDM, STDM; i.e Synchronous & Statistical Time Division Multiplexing. ATM Protocol Architecture, ATM Logical Connection, ATM Cells, Transmission of ATM Cells, ATM Service categories, ATM adaptation Layer.

UNIT - III

Data Transmission: Data Transmission basics, Asynchronous Transmission, Synchronous Transmission, Error Detection & Control, Data Link Control Protocols. Local Area Networks & Wide Area Networks: Wired LANs, Wireless LANs & Protocols, Performance, High Speed LANs: FDDI, Fast Ethernet, Packet Switched & Circuit Switched Networks, X.25 Networks, ISDN.

UNIT - IV

Internetworking and Firewalls: Introduction, Subnet & Subnet Architecture, Internetworking Architectures & Issues, Internet Protocol Standards, IPv4, IPng, ICMPv4, ICMPv6, Routing Protocols, Firewalls Basics.

UNIT - V

Application Layer Protocols: Basics, Commands: TCP, UDP, FTP, TFTP, TELNET, Ping, Trace route, SMTP, POP3, SNMP, Time Protocol, NNTP.

TEXT BOOKS:

- 1. Data Communications & Networking, Forouzan, Tata McGraw 2 nd Edition 2006.
- 2. Data Communications, Computer & Computer Networks & Open Systems, Fred Halsall, Pearson Education 2006 edition.

REFERENCE BOOK:

1. Stallings William, Data and Computer Communication, Pearson.