JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech. in CSE (COMPUTER NETWORKS) III & IV YEAR COURSE STRUCTURE & TENTATIVE SYLLABUS (R18)

Applicable From 2020-21 Admitted Batch

III YEAR I SEMESTER

S. No.	Course Code	Course Title		т	Р	Credits
1		Internetworking with TCP/IP	3	0	0	3
2		Database Management Systems	3	0	0	3
3		Design and Analysis of Algorithms	3	0	0	3
4		Finite Automata and Compiler Design	3	0	0	3
5		Professional Elective - I	3	0	0	3
6		Professional Elective - II	3	0	0	3
7		Database Management Systems Lab	0	0	3	1.5
8		Internetworking with TCP/IP Lab	0	0	3	1.5
9		Advanced Communication Skills Lab	0	0	2	1
10		Intellectual Property Rights	3	0	0	0
		Total Credits	21	0	8	22

III YEAR II SEMESTER

S. No.	Course Code	Course Title	L	т	Р	Credits
1		Software Engineering	3	1	0	4
2		Network Programming	3	1	0	4
3		Web Technologies	3	1	0	4
4		Professional Elective – III	3	0	0	3
5		Open Elective - I	3	0	0	3
6		Software Engineering Lab	0	0	3	1.5
7		Network Programming Lab	0	0	3	1.5
8		Web Technologies Lab	0	0	2	1
9		Environmental Science	3	0	0	0
		Total Credits	18	3	8	22

IV YEAR I SEMESTER

S. No.	Course Code	Course Title	L	т	Ρ	Credits
1		Cloud Computing	3	0	0	3
2		Cryptography and Network Security	2	0	0	2
3		Professional Elective – IV	3	0	0	3
4		Professional Elective – V	3	0	0	3
5		Open Elective – II	3	0	0	3
6		Cryptography and Network Security Lab	0	0	2	1
7		Industrial Oriented Mini Project/ Summer Internship	0	0	0	2*
8		Seminar	0	0	2	1
9		Project Stage – I	0	0	6	3
		Total Credits	14	0	10	21

S. No.	Course Code	Course Title	L	т	Ρ	Credits
1		Organizational Behaviour	3	0	0	3
2		Professional Elective –VI	3	0	0	3
3		Open Elective-III	3	0	0	3
4		Project Stage – II	0	0	14	7
		Total Credits	9	0	14	16

IV YEAR II SEMESTER

***Note:** Industrial Oriented Mini Project/ Summer Internship is to be carried out during the summer vacation between 6th and 7th semesters. Students should submit a report of Industrial Oriented Mini Project/ Summer Internship for evaluation.

MC – Environmental Science – Should be Registered by Lateral Entry Students Only. MC – Satisfactory/Unsatisfactory.

Professional Elective-I

Advanced Computer Architecture
Distributed Systems
Distributed Databases
Optimization Techniques
DevOps

Professional Elective – II

Image Processing
Advanced Computer Networks
Data Analytics
Mobile Application Security
Game Theory

Professional Elective – III

Mobile Application Development
Network Administration
Natural Language Processing
Cyber Forensics
Machine Learning

Professional Elective -IV

Neural Networks & Deep Learning
Wireless Networks
Information Retrieval Systems
Wireless Security
Network Management Systems and Operations

Professional Elective - V

Real Time Systems
Ad-hoc & Sensor Networks
Distributed Storage Networks
Blockchain Technology
Software Process & Project Management

Professional Elective – VI

Parallel and Distributed Computing
Internet of Things
5G Technologies
Cyber Laws & Ethics
Network Protocols

CLOUD COMPUTING

B.Tech. IV Year I Sem.

Pre-requisites:

- 1. A course on "Computer Networks".
- 2. A course on "Operating Systems".
- 3. A course on "Distributed Systems".

Course Objectives:

- 1. This course provides an insight into cloud computing.
- 2. Topics covered include- distributed system models, different cloud service models, serviceoriented architectures, cloud programming and software environments, resource management.

Course Outcomes:

- 1. Ability to understand various service delivery models of a cloud computing architecture.
- 2. Ability to understand the ways in which the cloud can be programmed and deployed.
- 3. Understanding cloud service providers.

UNIT - I

Computing Paradigms: High-Performance Computing, Parallel Computing, Distributed Computing, Cluster Computing, Grid Computing, Cloud Computing, Bio computing, Mobile Computing, Quantum Computing, Optical Computing, Nano computing.

UNIT - II

Cloud Computing Fundamentals: Motivation for Cloud Computing, The Need for Cloud Computing, Defining Cloud Computing, Definition of Cloud computing, Cloud Computing Is a Service, Cloud Computing Is a Platform, Principles of Cloud computing, Five Essential Characteristics, Four Cloud Deployment Models.

UNIT - III

Cloud Computing Architecture and Management: Cloud architecture, Layer, Anatomy of the Cloud, Network Connectivity in Cloud Computing, Applications, on the Cloud, Managing the Cloud, Managing the Cloud Infrastructure Managing the Cloud application, Migrating Application to Cloud, Phases of Cloud Migration Approaches for Cloud Migration.

UNIT - IV

Cloud Service Models: Infrastructure as a Service, Characteristics of IaaS. Suitability of IaaS, Pros and Cons of IaaS, Summary of IaaS Providers, Platform as a Service, Characteristics of PaaS, Suitability of PaaS, Pros and Cons of PaaS, Summary of PaaS Providers, Software as a Service, Characteristics of SaaS, Suitability of SaaS, Pros and Cons of SaaS, Summary of SaaS Providers, Other Cloud Service Models.

UNIT V

Cloud Service Providers: EMC, EMC IT, Captiva Cloud Toolkit, Google, Cloud Platform, Cloud Storage, Google Cloud Connect, Google Cloud Print, Google App Engine, Amazon Web Services, Amazon Elastic Compute Cloud, Amazon Simple Storage Service, Amazon Simple Queue, service, Microsoft, Windows Azure, Microsoft Assessment and Planning Toolkit, SharePoint, IBM, Cloud Models, IBM Smart Cloud, SAP Labs, SAP HANA Cloud Platform, Virtualization Services Provided by SAP, Sales force, Sales Cloud, Service Cloud: Knowledge as a Service, Rack space, VMware, Manjra soft, Aneka Platform.

TEXT BOOK:

1. Essentials of cloud Computing: K. Chandrasekhran, CRC press, 2014.

- 1. Cloud Computing: Principles and Paradigms by Rajkumar Buyya, James Broberg and Andrzej M. Goscinski, Wiley, 2011.
- 2. Distributed and Cloud Computing, Kai Hwang, Geoffery C. Fox, Jack J. Dongarra, Elsevier, 2012.
- 3. Cloud Security and Privacy: An Enterprise Perspective on Risks and Compliance, Tim Mather, Subra Kumaraswamy, Shahed Latif, O'Reilly, SPD, rp 2011.

L	Т	Ρ	С
3	0	0	3

CRYPTOGRAPHY AND NETWORK SECURITY

B.Tech. IV Year I Sem.

L	Т	Ρ	С
2	0	0	2

Course Objectives:

- Explain the objectives of information security.
- Explain the importance and application of each of confidentiality, integrity, authentication and availability.
- Understand various cryptographic algorithms.
- Understand the basic categories of threats to computers and networks.
- Describe public-key cryptosystem.
- Describe the enhancements made to IPv4 by IPSec.
- Understand Intrusions and intrusion detection.
- Discuss the fundamental ideas of public-key cryptography.
- Generate and distribute a PGP key pair and use the PGP package to send an encrypted email message.
- Discuss Web security and Firewalls.

Course Outcomes:

- Student will be able to understand basic cryptographic algorithms, message and web authentication and security issues.
- Ability to identify information system requirements for both of them such as client and server.
- Ability to understand the current legal issues towards information security.

UNIT - I

Security Concepts: Introduction, The need for security, Security approaches, Principles of security, Types of Security attacks, Security services, Security Mechanisms, A model for Network Security. **Cryptography Concepts and Techniques:** Introduction, plain text and cipher text, substitution

techniques, transposition techniques, encryption and decryption, symmetric and asymmetric key cryptography, steganography, key range and key size, possible types of attacks.

UNIT - II

Symmetric key Ciphers: Block Cipher principles, DES, AES, Blowfish, RC5, IDEA, Block cipher operation, Stream ciphers, RC4.

Asymmetric key Ciphers: Principles of public key cryptosystems, RSA algorithm, Elgamal Cryptography, Diffie-Hellman Key Exchange, Knapsack Algorithm.

UNIT - III

Cryptographic Hash Functions: Message Authentication, Secure Hash Algorithm (SHA-512), **Message authentication codes:** Authentication requirements, HMAC, CMAC, Digital signatures, Elgamal Digital Signature Scheme.

Key Management and Distribution: Symmetric Key Distribution Using Symmetric & Asymmetric Encryption, Distribution of Public Keys, Kerberos, X.509 Authentication Service, Public – Key Infrastructure.

UNIT - IV

Transport-level Security: Web security considerations, Secure Socket Layer and Transport Layer Security, HTTPS, Secure Shell (SSH).

Wireless Network Security: Wireless Security, Mobile Device Security, IEEE 802.11 Wireless LAN, IEEE 802.11i Wireless LAN Security.

UNIT - V

E-Mail Security: Pretty Good Privacy, S/MIME **IP Security:** IP Security overview, IP Security architecture, Authentication Header, Encapsulating security payload, Combining security associations, Internet Key Exchange.

Case Studies on Cryptography and security: Secure Multiparty Calculation, Virtual Elections, Single sign On, Secure Inter-branch Payment Transactions, Cross site Scripting Vulnerability.

TEXT BOOKS:

- 1. Cryptography and Network Security Principles and Practice: William Stallings, Pearson Education, 6th Edition.
- 2. Cryptography and Network Security: Atul Kahate, Mc Graw Hill, 3rd Edition.

- 1. Cryptography and Network Security: C K Shyamala, N Harini, Dr T R Padmanabhan, Wiley India, 1st Edition.
- 2. Cryptography and Network Security: Forouzan Mukhopadhyay, Mc Graw Hill, 3rd Edition.
- 3. Information Security, Principles, and Practice: Mark Stamp, Wiley India.
- 4. Principles of Computer Security: WM. Arthur Conklin, Greg White, TMH.
- 5. Introduction to Network Security: Neal Krawetz, CENGAGE Learning.
- 6. Network Security and Cryptography: Bernard Menezes, CENGAGE Learning.

NEURAL NETWORKS AND DEEP LEARNING (Professional Elective – IV)

B.Tech. IV Year I Sem.

Course Objectives:

- To introduce the foundations of Artificial Neural Networks
- To acquire the knowledge on Deep Learning Concepts
- To learn various types of Artificial Neural Networks
- To gain knowledge to apply optimization strategies

Course Outcomes:

- Ability to understand the concepts of Neural Networks
- Ability to select the Learning Networks in modeling real world systems
- Ability to use an efficient algorithm for Deep Models
- Ability to apply optimization strategies for large scale applications

UNIT - I

Artificial Neural Networks Introduction, Basic models of ANN, important terminologies, Supervised Learning Networks, Perceptron Networks, Adaptive Linear Neuron, Back-propagation Network. Associative Memory Networks. Training Algorithms for pattern association, BAM and Hopfield Networks.

UNIT- II

Unsupervised Learning Network- Introduction, Fixed Weight Competitive Nets, Maxnet, Hamming Network, Kohonen Self-Organizing Feature Maps, Learning Vector Quantization, Counter Propagation Networks, Adaptive Resonance Theory Networks. Special Networks-Introduction to various networks.

UNIT - III

Introduction to Deep Learning, Historical Trends in Deep learning, Deep Feed - forward networks, Gradient-Based learning, Hidden Units, Architecture Design, Back-Propagation and Other Differentiation Algorithms

UNIT - IV

Regularization for Deep Learning: Parameter norm Penalties, Norm Penalties as Constrained Optimization, Regularization and Under-Constrained Problems, Dataset Augmentation, Noise Robustness, Semi-Supervised learning, Multi-task learning, Early Stopping, Parameter Typing and Parameter Sharing, Sparse Representations, Bagging and other Ensemble Methods, Dropout, Adversarial Training, Tangent Distance, tangent Prop and Manifold, Tangent Classifier

UNIT - V

Optimization for Train Deep Models: Challenges in Neural Network Optimization, Basic Algorithms, Parameter Initialization Strategies, Algorithms with Adaptive Learning Rates, Approximate Second-Order Methods, Optimization Strategies and Meta-Algorithms

Applications: Large-Scale Deep Learning, Computer Vision, Speech Recognition, Natural Language Processing

TEXT BOOKS:

- 1. Deep Learning: An MIT Press Book By Ian Goodfellow and Yoshua Bengio and Aaron Courville
- 2. Neural Networks and Learning Machines, Simon Haykin, 3rd Edition, Pearson Prentice Hall.

L	Т	Ρ	С
3	0	0	3

WIRELESS NETWORKS (Professional Elective – IV)

B.Tech. IV Year I Sem.

Prerequisite: Wireless Sensor Networks.

Course Objectives:

- 1. To study the fundamentals of wireless Ad-Hoc Networks.
- 2. To study the operation and performance of various Ad Hoc wireless network protocols.
- 3. To study the architecture and protocols of Wireless sensor networks.

Course Outcomes:

- 1. Students will be able to understand the basis of Ad-hoc wireless networks.
- 2. Students will be able to understand design, operation and the performance of MAC layer protocols of Ad Hoc wireless networks.
- 3. Students will be able to understand design, operation and the performance of routing protocol of Ad Hoc wireless network.
- 4. Students will be able to understand design, operation and the performance of transport layer protocol of Ad Hoc wireless networks.
- 5. Students will be able to understand sensor network Architecture and will be able to distinguish between protocols used in Adhoc wireless networks and wireless sensor networks.

UNIT - I:

Wireless LANs and PANs: Introduction, Fundamentals of WLANS, IEEE 802.11 Standards, HIPERLAN Standard, Bluetooth, Home RF.

AD HOC WIRELESS NETWORKS: Introduction, Issues in Ad Hoc Wireless Networks.

UNIT - II:

MAC Protocols: Introduction, Issues in Designing a MAC protocol for Ad Hoc Wireless Networks, Design goals of a MAC Protocol for Ad Hoc Wireless Networks, Classifications of MAC Protocols, Contention - Based Protocols, Contention - Based Protocols with reservation Mechanisms, Contention – Based MAC Protocols with Scheduling Mechanisms, MAC Protocols that use Directional Antennas, Other MAC Protocols.

UNIT - III:

Routing Protocols: Introduction, Issues in Designing a Routing Protocol for Ad Hoc Wireless Networks, Classification of Routing Protocols, Table –Driven Routing Protocols, On – Demand Routing Protocols, Hybrid Routing Protocols, Routing Protocols with Efficient Flooding Mechanisms, Hierarchical Routing Protocols, Power – Aware Routing Protocols.

UNIT - IV:

Transport Layer Protocols: Introduction, Issues in Designing a Transport Layer Protocol for Ad Hoc Wireless Networks, Design Goals of a Transport Layer Protocol for Ad Hoc Wireless Networks, Classification of Transport Layer Solutions, TCP Over Ad Hoc Wireless Networks, Other Transport Layer Protocol for Ad Hoc Wireless Networks.

UNIT - V:

Wireless Sensor Networks: Introduction, Sensor Network Architecture, Data Dissemination, Data Gathering, MAC Protocols for Sensor Networks, Location Discovery, Quality of a Sensor Network, Evolving Standards, Other Issues.

TEXT BOOKS:

- 1. Ad Hoc Wireless Networks: Architectures and Protocols C. Siva Ram Murthy and B.S.Manoj, 2004, PHI.
- 2. Wireless Ad- hoc and Sensor Networks: Protocols, Performance and Control Jagannathan Sarangapani, CRC Press.

- 1. Ad- Hoc Mobile Wireless Networks: Protocols & Systems, C.K. Toh, 1st Ed. Pearson Education.
- 2. Wireless Sensor Networks C. S. Raghavendra, Krishna M. Sivalingam, 2004, Springer.

L	Т	Ρ	С
3	0	0	3

L T P C 3 0 0 3

INFORMATION RETRIEVAL SYSTEMS (Professional Elective – IV)

B.Tech. IV Year I Sem.

Prerequisites: Data Structures.

Course Objectives:

- 1. To learn the important concepts and algorithms in IRS.
- 2. To understand the data/file structures that are necessary to design, and implement information retrieval (IR) systems.

Course Outcomes:

- 1. Ability to apply IR principles to locate relevant information large collections of data.
- 2. Ability to design different document clustering algorithms.
- 3. Implement retrieval systems for web search tasks.
- 4. Design an Information Retrieval System for web search tasks.

UNIT - I

Introduction to Information Retrieval Systems: Definition of Information Retrieval System, Objectives of Information Retrieval Systems, Functional Overview, Relationship to Database Management Systems, Digital Libraries and Data Warehouses.

Information Retrieval System Capabilities: Search Capabilities, Browse Capabilities, Miscellaneous Capabilities.

UNIT - II

Cataloging and Indexing: History and Objectives of Indexing, Indexing Process, Automatic Indexing, Information Extraction.

Data Structure: Introduction to Data Structure, Stemming Algorithms, Inverted File Structure, N-Gram Data Structures, PAT Data Structure, Signature File Structure, Hypertext and XML Data Structures, Hidden Markov Models.

UNIT - III

Automatic Indexing: Classes of Automatic Indexing, Statistical Indexing, Natural Language, Concept Indexing, Hypertext Linkages.

Document and Term Clustering: Introduction to Clustering, Thesaurus Generation, Item Clustering, Hierarchy of Clusters.

UNIT - IV

User Search Techniques: Search Statements and Binding, Similarity Measures and Ranking, Relevance Feedback, Selective Dissemination of Information Search, Weighted Searches of Boolean Systems, Searching the INTERNET and Hypertext.

Information Visualization: Introduction to Information Visualization, Cognition and Perception, Information Visualization Technologies.

UNIT - V

Text Search Algorithms: Introduction to Text Search Techniques, Software Text Search Algorithms, Hardware Text Search Systems.

Multimedia Information Retrieval: Spoken Language Audio Retrieval, Non-Speech Audio Retrieval, Graph Retrieval, Imagery Retrieval, Video Retrieval.

TEXT BOOK:

1. Information Storage and Retrieval Systems – Theory and Implementation, Second Edition, Gerald J. Kowalski, Mark T. Maybury, Springer

- 1. Frakes, W.B., Ricardo Baeza-Yates: Information Retrieval Data Structures and Algorithms, Prentice Hall, 1992.
- 2. Information Storage & Retrieval By Robert Korfhage John Wiley & Sons.
- 3. Modern Information Retrieval By Yates and Neto Pearson Education.

WIRELESS SECURITY (Professional Elective – IV)

B.Tech. IV Year I Sem.

Pre-requisites: Mobile Computing.

Course Objectives:

- 1. To learn Security Issues in Mobile Communication.
- 2. To learn Application Level Security in Cellular Networks, MANETs.
- 3. To learn Application Level Security in Ubiquitous networks.
- 4. To learn Security for mobile commerce applications.

Course Outcomes:

- 1. Familiarize with the issues and technologies involved in designing a wireless and mobile.
- 2. Have a broad knowledge of the state-of-the-art and open problems in wireless and mobile security, thus enhancing their potential to do research or pursue a career in this rapidly developing area.
- 3. Understand and analyze Application Level Security in Ubiquitous networks.
- 4. Learn various security issues involved at the application level security in cellular networks.

UNIT – I

Security Issues in Mobile Communication: Mobile Communication History, Security – Wired Vs Wireless, Security Issues in Wireless and Mobile Communications, Security Requirements in Wireless and Mobile Communications, Security for Mobile Applications, Advantages and Disadvantages of Application – level Security.

UNIT – II

Security of Device, Network, and Server Levels: Mobile Devices Security Requirements, Mobile Wireless network level Security, Server Level Security, Application Level Security in Wireless Networks: Application of WLANs, Wireless Threats, Some Vulnerabilities and Attach Methods over WLANs, Security for 1g Wi-Fi Applications, Security for 2g Wi-Fi Applications, Recent Security Schemes for Wi-Fi Applications.

UNIT – III

Application Level Security in Cellular Networks: Generations of Cellular Networks, Security Issues and attacks in cellular networks, GSM Security for applications, GPRS Security for applications, UMTS security for applications, 3G security for applications, Some of Security and authentication Solutions, Application Level Security in MANETs: MANETs, Some applications of MANETs, MANET Features, Security Challenges in MANETs, Security Attacks on MANETs, External Threats for MANET applications, Internal threats for MANET Applications, Some of the Security Solutions.

UNIT – IV

Application Level Security in Ubiquitous networks: Ubiquitous Computing, Need for Novel Security Schemes for UC, Security Challenges for UC, Security Attacks on UC networks, Some of the security solutions for UC, Application Level Security in Heterogeneous wireless networks: Introduction, Some of the Heterogeneous wireless network architectures, Heterogeneous network application in Disaster management, Security problems and attacks in heterogeneous wireless networks, Some security solutions for heterogeneous wireless networks.

UNIT - V

Security for mobile commerce applications: M-Commerce Applications, M-Commerce Initiatives, Security Challenges in mobile e-commerce, Types of attacks on mobile e-commerce, A Secure M-commerce model based on wireless local area network, Some of M-Commerce Security Solutions.

L	Т	Ρ	С
3	0	0	3

TEXT BOOKS:

- 1. Wireless & Mobile Network Security: Pallapa Venkataram, Satish Babu, TMH, 2010.
- 2. Fundamentals of Mobile and Pervasive Computing, Frank Adelstein, K.S.Gupta et al, TMH 2005.

- 1. Wireless Security Models, Threats and Solutions, Randall k. Nichols, Panos C. Lekkas, TMH, 2006.
- 2. 802.11 Security, Bruce Potter & Bob Fleck, SPD O'REILLY 2005.
- 3. Guide to Wireless Network Security, Springer.
- 4. Hacking Exposed Wireless: Johnny Cache, 2nd Edition, Joshua Wright, Vincent Lu, Mc Graw Hill.

NETWORK MANAGEMENT SYSTEMS AND OPERATIONS (Professional Elective – IV)

B.Tech. IV Year I Sem.	L	т	Ρ	С
	3	0	0	3

Course Objectives:

- 1. To maintain optimal network performance and availability, and to ensure continuous uptime.
- 2. Monitor the network for problems that require special attention.

Course Outcomes:

- 1. Understand the basic network elements and their services.
- 2. To able to familiarize with different network faults and their correction techniques.
- 3. Understand various measures of network performance.

UNIT - I

The Network Management Challenge: Introduction, The Internet and Network Management, Internet Structure, Managing an Entity, Internal and External policies, The state of Network Management, Network Management in the Gartner Model, Benefits of Automation, The Lack of Industry Response, Impact on Business, Distributed Systems and new abstractions.

A Review of Network Elements and Services: Introduction, Network Devices and Network Services, Network Elements and Element Management, Effect of physical organization on Management, Examples of Network Elements and Services, Basic Ethernet Switch, VLAN Switch, Access Point for a Wireless LAN,

Cable Modem System, DSL Modem System and DSLAM, CSU/DSU used in Wide Area Digital Circuits, Channel Bank, IP Router, Firewall, DNS Server, DHCP Server, Web Server, HTTP Load Balancer.

UNIT - II

The Network Management Problem: Introduction, What is Network Management?, The scope of Network Management, variety and multi-vendor environments, element and network management systems, scale and complexity, types of networks, classification of devices, FCAPS: The Industry Standard Definition, The motivation for automation, Why Automation has not occurred, Organization of management Software.

Configuration and Operation: Introduction, Intuition for configuration, configuration and protocol layering, dependencies among configuration parameters, seeking a more precise definition of configuration, configuration and temporal consequences, configuration and global consistency, global state and practical systems, configuration and default values, partial state, automatic update and recovery, Interface paradigm and incremental configuration, commit and rollback during configuration, automated rollback and timeout, snapshot, configuration, and partial state, separation of setup and activation.

UNIT - III

Fault detection and correction: Introduction, Network Faults, Trouble Reports, Symptoms, And Causes, Troubleshooting And Diagnostics, Monitoring, Baselines, Items That Can Be Monitored, Alarms, Logs, And Polling, Identifying The Cause Of A Fault, Human Failure And Network Faults, Protocol Layering And Faults, Hidden Faults And Automatic Correction, Anomaly Detection And Event Correlation, Fault Prevention.

Performance Assessment and Optimization: Introduction, aspects of performance, Items that can be measured, measures of network performance, application and endpoint sensitivity, degraded service, variance in traffic and congestion, congestion, delay and utilization, local and end-to-end measurements, passive observation Vs. active probing, bottlenecks and future planning, capacity Planning, planning the capacity of a switch, planning the capacity of a router, planning the capacity of an Internet connection, measuring peak and average traffic on a link, estimated peak utilization and 95th percentile, relationship between average and peak utilization, consequences for management and

the 50/80 Rule, capacity planning for a complex topology, a capacity planning process, route changes and traffic engineering, failure scenarios and availability.

UNIT - IV

Security: Introduction, The illusion of a secure network, security as a process, security terminology and concepts, management goals related to security, Risk Assessment, Security policies, acceptable use policy, basic technologies used for security, management issues and security, Security architecture: Perimeter Vs. Resources, element coordination and firewall unification, resource limits and denial of service, management of authentication, access control and user authentication, management of wireless networks, security of the network, role-based access control, audit trails and security logging, key management.

Management tools and technologies: Introduction, the principle of most recent change, the evolution of Management tools, management tools as applications, using a separate network for management, types of management tools, physical layer testing tools, reach ability and connectivity tools (ping), packet analysis tools, discovery tools, device interrogation interfaces and tools, event monitoring tools, triggers, Urgency Levels, And Granularity, events, Urgency Levels and traffic, performance monitoring tools, flow analysis tools, routing and traffic engineering tools, Configuration tools, Security Enforcement tools, Network Planning tools, Integration of Management tools, NOCs and Remote Monitoring, Remote CLI Access, Remote Aggregation Of Management Traffic.

UNIT - V

Network Management Tools: Zabbix Labs, Nagios, Google Cloud network, Automation with Terraform.

TEXT BOOKS:

- 1. Automated Network Management Systems, D. Comer, Prentice Hall, 2006, ISBN No. 0132393085.
- 2. Nagios Core Administration Cookbook Second Edition, Tom Ryder, 2016, Packt publishing, ISBN: 781785889332.
- 3. Terraform: Up and Running, Yevgeniy Brikman, 2017, O'Reilly Media, Inc., ISBN: 9781491977088.

REFERENCE BOOK:

1. Applied Network Security Monitoring, Chris Sanders, Jason Smith, Syngress publications.

REAL TIME SYSTEMS (Professional Elective – V)

B.Tech. IV Year I Sem.	L	т	Ρ	С
	3	0	0	3
Prerequisite: Computer Organization and Operating System				

Course Objectives:

- To provide broad understanding of the requirements of Real Time Operating Systems.
- To make the student understand, applications of these Real Time features using case studies.

Course Outcomes:

- Be able to explain real-time concepts such as preemptive multitasking, task priorities, priority inversions, mutual exclusion, context switching, and synchronization, interrupt latency and response time, and semaphores.
- Able describe how a real-time operating system kernel is implemented.
- Able explain how tasks are managed.
- Explain how the real-time operating system implements time management.
- Discuss how tasks can communicate using semaphores, mailboxes, and queues.
- Be able to implement a real-time system on an embedded processor.
- Be able to work with real time operating systems like RT Linux, Vx Works, MicroC /OSII, Tiny Os

UNIT – I

Introduction: Introduction to UNIX/LINUX, Overview of Commands, File I/O,(open, create, close, lseek, read, write), Process Control (fork, vfork, exit, wait, waitpid, exec).

UNIT - II

Real Time Operating Systems: Brief History of OS, Defining RTOS, The Scheduler, Objects, Services, Characteristics of RTOS, Defining a Task, asks States and Scheduling, Task Operations, Structure, Synchronization, Communication and Concurrency. Defining Semaphores, Operations and Use, Defining Message Queue, States, Content, Storage, Operations and Use

UNIT - III

Objects, Services and I/O: Pipes, Event Registers, Signals, Other Building Blocks, Component Configuration, Basic I/O Concepts, I/O Subsystem

UNIT - IV

Exceptions, Interrupts and Timers: Exceptions, Interrupts, Applications, Processing of Exceptions and Spurious Interrupts, Real Time Clocks, Programmable Timers, Timer Interrupt Service Routines (ISR), Soft Timers, Operations.

UNIT - V

Case Studies of RTOS: RT Linux, MicroC/OS-II, Vx Works, Embedded Linux, and Tiny OS.

TEXT BOOK:

1. Real Time Concepts for Embedded Systems - Qing Li, Elsevier, 2011

- 1. Embedded Systems- Architecture, Programming and Design by Rajkamal, 2007, TMH.
- 2. Advanced UNIX Programming, Richard Stevens
- 3. Embedded Linux: Hardware, Software and Interfacing Dr. Craig Hollabaugh

AD-HOC & SENSOR NETWORKS (Professional Elective – V)

B.Tech. IV Year I Sem.

L	Т	Ρ	С
3	0	0	3

Prerequisites:

- 1. A course on "Computer Networks".
- 2. A course on "Mobile Computing".

Course Objectives:

- To understand the concepts of sensor networks.
- To understand the MAC and transport protocols for ad hoc networks.
- To understand the security of sensor networks.
- To understand the applications of adhoc and sensor networks.

Course Outcomes:

- Ability to understand the state-of-the-art research in the emerging subject of Ad Hoc and Wireless Sensor Networks
- Ability to solve the issues in real-time application development based on ASN.
- Ability to conduct further research in the domain of ASN

UNIT - I

Introduction to Ad Hoc Networks - Characteristics of MANETs, Applications of MANETs and Challenges of MANETs.

Routing in MANETs - Criteria for classification, Taxonomy of MANET routing algorithms, Topologybased routing algorithms-**Proactive**: DSDV; **Reactive**: DSR, AODV; Hybrid: ZRP; Position-based routing algorithms-**Location Services**-DREAM, Quorum-based; **Forwarding Strategies:** Greedy Packet, Restricted Directional Flooding-DREAM, LAR.

UNIT - II

Data Transmission - Broadcast Storm Problem, **Rebroadcasting Schemes**-Simple-flooding, Probability-based Methods, Area-based Methods, Neighbor Knowledge-based: SBA, Multipoint Relaying, AHBP. **Multicasting: Tree-based:** AMRIS, MAODV; **Mesh-based:** ODMRP, CAMP; **Hybrid:** AMRoute, MCEDAR.

UNIT - III

Geocasting: Data-transmission Oriented-LBM; Route Creation Oriented-GeoTORA, MGR. TCP over Ad Hoc TCP protocol overview, TCP and MANETs, Solutions for TCP over Ad hoc

UNIT - IV

Basics of Wireless, Sensors and Lower Layer Issues: Applications, Classification of sensor networks, Architecture of sensor network, Physical layer, MAC layer, Link layer, Routing Layer.

UNIT - V

Upper Layer Issues of WSN: Transport layer, High-level application layer support, Adapting to the inherent dynamic nature of WSNs, Sensor Networks and mobile robots.

TEXT BOOKS:

- 1. Ad Hoc and Sensor Networks Theory and Applications, Carlos Corderio Dharma P. Aggarwal, World Scientific Publications, March 2006, ISBN 981–256–681–3.
- 2. Wireless Sensor Networks: An Information Processing Approach, Feng Zhao, Leonidas Guibas, Elsevier Science, ISBN 978-1-55860-914-3 (Morgan Kauffman).

DISTRIBUTED STORAGE NETWORKS (Professional Elective – V)

B.Tech. IV Year I Sem.	L	т	Ρ	С
	3	0	0	3

Prerequisites: A basic knowledge of "Computer Networks".

Course Objectives:

- 1. The aim of the course is to introduce the fundamentals of Storage Networks.
- 2. The course gives an overview of Storage Concepts, Applications, architecture, protocols, infrastructure, management and security of distributed storage networks.

Course Outcomes:

- 1. Understand the need for a storage area network.
- 2. Understand various storage technologies like SAN, NAS, IP storage etc.
- 3. Get an analysis of distributed storage area network architecture, protocols and its infrastructure.
- 4. Understand the management and security of distributed storage area networks.
- 5. Evaluate and analyze case studies on the distributed storage area network technology.

UNIT - I

Evaluation of Storage Networking, Terminology, Storage Concepts, SAN Applications, Applications for Distributed Storage Networking.

UNIT - II

Distance Considerations for Storage Networks, Physical Layer, Protocol Consideration, Caching, Architecture for Distributed Storage Networking, Storage Networking in the Business Park, Storage Networking in the Metro Network, Storage Networking in the Wide Area Network, Small Computer Systems Interface (SCSI), Enterprise Systems Connection (ESCON).

UNIT - III

Fiber Connection (FICON), Fiber Channel (FC), 10G Ethernet, InfiniBand, Applications, Standards, Physical Layer.

UNIT - IV

MAN/WAN Protocols for Distributed Storage Networking, Wavelength Division Multiplexing (WDM), Time Division Multiplexing and SONET, Asynchronous Transfer Mode (ATM), Generic Framing Procedure (GFP), Storage Over IP, Internet SCSI (iSCSI), Fiber Channel and IP Networks.

UNIT - V

The SNIA Shared Storage Model, The SNIA Management Model, The SNIA Prototype, Security Consideration, Physical Security, User Login and Administration, Management Interface, Firewalls, Encryption and IPSec, public Key Infrastructure and Digital Certificates, SAN Security, NAS Security, Analyzing Network Architecture for Security Issues.

TEXT BOOK:

1. Distributed Storage Networks: Architecture, Protocols and Management by Thomas C. Jepsen

REFERENCE BOOK:

1. Storage Networks Explained: Basics and Application of Fibre Channel SAN, NAS, iSCSI, InfiniBand and FCoE 2nd Edition by Ulf Troppens, Rainer Erkens, Wolfgang Muller-Friedt, Rainer Wolafka, Nils Haustein.

BLOCKCHAIN TECHNOLOGY (Professional Elective – V)

B.Tech. IV Year I Sem.

L	Т	Ρ	С	
3	0	0	3	

Prerequisites:

- 1. Knowledge in security and applied cryptography.
- 2. Knowledge in distributed databases.

Course Objectives: To Introduce block chain technology and Cryptocurrency.

Course Outcomes:

- 1. Learn about research advances related to one of the most popular technological areas today.
- 2. Understand Extensibility of Blockchain concepts.
- 3. Understand and Analyze Blockchain Science.
- 4. Understand Technical challenges, Business model challenges.

UNIT - I

Introduction: Block chain or distributed trust, Protocol, Currency, Cryptocurrency, How a Cryptocurrency works, Crowdfunding.

UNIT - II

Extensibility of Blockchain concepts, Digital Identity verification, Block chain Neutrality, Digital art, Blockchain Environment.

UNIT - III

Blockchain Science: Gridcoin, Folding coin, Blockchain Genomics, Bitcoin MOOCs.

UNIT - IV

Currency, Token, Tokenizing, Campuscoin, Coindrop as a strategy for Public adoption, Currency Multiplicity, Demurrage currency.

UNIT - V

Technical challenges, Business model challenges, Scandals and Public perception, Government Regulations.

TEXT BOOK:

1. Melanie Swan, Blockchain Blueprint for Economy, O'reilly.

- 1. Building Blockchain Apps, Michael Juntao Yuan, Pearson Education
- 2. Daniel Drescher, Blockchain Basics: A Non-Technical Introduction in 25 Steps 1st Edition
- Bradley Lakeman, Blockchain Revolution: Understanding the Crypto Economy of the Future. A Non-Technical Guide to the Basics of Cryptocurrency Trading and Investing, ISBN: 1393889158.

L T P C 3 0 0 3

SOFTWARE PROCESS & PROJECT MANAGEMENT (Professional Elective - V)

B.Tech. IV Year I Sem.

Course Objectives:

- To acquire knowledge on software process management
- To acquire managerial skills for software project development
- To understand software economics

Course Outcomes:

- Gain knowledge of software economics, phases in the life cycle of software development, project organization, project control and process instrumentation
- Analyze the major and minor milestones, artifacts and metrics from management and technical perspective
- Design and develop software product using conventional and modern principles of software project management

UNIT - I

Software Process Maturity

Software maturity Framework, Principles of Software Process Change, Software Process Assessment, The Initial Process, The Repeatable Process, The Defined Process, The Managed Process, The Optimizing Process.

Process Reference Models

Capability Maturity Model (CMM), CMMI, PCMM, PSP, TSP).

UNIT - II

Software Project Management Renaissance

Conventional Software Management, Evolution of Software Economics, Improving Software Economics, The old way and the new way.

Life-Cycle Phases and Process artifacts

Engineering and Production stages, inception phase, elaboration phase, construction phase, transition phase, artifact sets, management artifacts, engineering artifacts and pragmatic artifacts, model-based software architectures.

UNIT - III

Workflows and Checkpoints of process

Software process workflows, Iteration workflows, Major milestones, minor milestones, periodic status assessments.

Process Planning

Work breakdown structures, Planning guidelines, cost and schedule estimating process, iteration planning process, Pragmatic planning.

UNIT - IV

Project Organizations

Line-of- business organizations, project organizations, evolution of organizations, process automation. Project Control and process instrumentation

The seven-core metrics, management indicators, quality indicators, life-cycle expectations, Pragmatic software metrics, metrics automation.

UNIT - V

CCPDS-R Case Study and Future Software Project Management Practices Modern Project Profiles, Next-Generation software Economics, Modern Process Transitions.

TEXT BOOKS:

- 1. Managing the Software Process, Watts S. Humphrey, Pearson Education
- 2. Software Project Management, Walker Royce, Pearson Education

- 1. An Introduction to the Team Software Process, Watts S. Humphrey, Pearson Education, 2000
- 2. Process Improvement essentials, James R. Persse, O'Reilly, 2006
- 3. Software Project Management, Bob Hughes & Mike Cotterell, fourth edition, TMH, 2006
- 4. Applied Software Project Management, Andrew Stellman & Jennifer Greene, O'Reilly, 2006.
- 5. Head First PMP, Jennifer Greene & Andrew Stellman, O'Reilly, 2007
- 6. Software Engineering Project Management, Richard H. Thayer & Edward Yourdon, 2nd edition, Wiley India, 2004.
- 7. Agile Project Management, Jim Highsmith, Pearson education, 2004.

CRYPTOGRAPHY AND NETWORK SECURITY LAB

B.Tech. IV Year I Sem.

L	Т	Ρ	С
0	0	2	1

Course Objectives:

- 1. Explain the objectives of information security.
- 2. Explain the importance and application of each of confidentiality, integrity, authentication and availability.
- 3. Understand various cryptographic algorithms.

Course Outcomes:

- 1. Understand basic cryptographic algorithms, message and web authentication and security issues.
- 2. Identify information system requirements for both of them such as client and server.
- 3. Understand the current legal issues towards information security.

List of Experiments:

- 1. Write a C program that contains a string (char pointer) with a value 'Hello world'. The program should XOR each character in this string with 0 and displays the result.
- 2. Write a C program that contains a string (char pointer) with a value 'Hello world'. The program should AND or and XOR each character in this string with 127 and display the result.
- 3. Write a Java program to perform encryption and decryption using the following algorithms a. Ceaser cipher b. Substitution cipher c. Hill Cipher
- 4. Write a C/JAVA program to implement the DES algorithm logic.
- 5. Write a C/JAVA program to implement the Blowfish algorithm logic.
- 6. Write a C/JAVA program to implement the Rijndael algorithm logic.
- 7. Write the RC4 logic in Java Using Java cryptography; encrypt the text "Hello world" using Blowfish. Create your own key using Java key tool.
- 8. Write a Java program to implement RSA algorithm.
- 9. Implement the Diffie-Hellman Key Exchange mechanism using HTML and JavaScript.
- 10. Calculate the message digest of a text using the SHA-1 algorithm in JAVA.
- 11. Calculate the message digest of a text using the MD5 algorithm in JAVA.

TEXT BOOKS:

- 1. Cryptography and Network Security Principles and Practice: William Stallings, Pearson Education, 6th Edition.
- 2. Cryptography and Network Security: Atul Kahate, McGraw Hill, 3rd Edition.

- 1. Cryptography and Network Security: C K Shyamala, N Harini, Dr T R Padmanabhan, Wiley India, 1st Edition.
- 2. Cryptography and Network Security: Forouzan Mukhopadhyay, McGraw Hill, 3rd Edition
- 3. Information Security, Principles, and Practice: Mark Stamp, Wiley India.
- 4. Principles of Computer Security: WM. Arthur Conklin, Greg White, TMH.
- 5. Introduction to Network Security: Neal Krawetz, CENGAGE Learning.
- 6. Network Security and Cryptography: Bernard Menezes, CENGAGE Learning.