JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech in COMPUTER ENGG. (SOFTWARE ENGINEERING) III & IV YEAR COURSE STRUCTURE & TENTATIVE SYLLABUS (R18)

Applicable From 2020-21 Admitted Batch

III YEAR I SEMESTER

S. No.	Course Code	Course Title		т	Ρ	Credits
1		Design and Analysis of Algorithms	3	0	0	3
2		Computer Networks	3	0	0	3
3		Database Management Systems	3	0	0	3
4		Software Requirements & Estimation	3	0	0	3
5		Professional Elective – I	3	0	0	3
6		Professional Elective – II	3	0	0	3
7		Computer Networks Lab	0	0	3	1.5
8		Database Management Systems Lab	0	0	3	1.5
9		Advanced Communication Skills Lab	0	0	2	1
10		Intellectual Property Rights	3	0	0	0
		Total Credits	21	0	8	22

III YEAR II SEMESTER

S. No.	Course Code	Course Title		т	Ρ	Credits
1		Automata Theory and Compiler Design	3	1	0	4
2		Software Testing Methodologies		1	0	4
3		Software Architecture and Design Patterns		1	0	4
4		Professional Elective – III	3	0	0	3
5		Open Elective – I	3	0	0	3
6		Compiler Design Lab	0	0	3	1.5
7		Software Testing Lab	0	0	3	1.5
8		Professional Elective - III Lab	0	0	2	1
9		Environmental Science	3	0	0	0
		Total Credits	18	3	8	22

IV YEAR I SEMESTER

S. No.	Course Code	Course Title	L	т	Ρ	Credits
1		Agile Software Development	3	0	0	3
2		Machine Learning	2	0	0	2
3		Professional Elective – IV	3	0	0	3
4		Professional Elective – V	3	0	0	3
5		Open Elective – II	3	0	0	3
6		Machine Learning Lab	0	0	2	1
7		Industrial Oriented Mini Project/ Summer Internship	0	0	0	2*
8		Seminar	0	0	2	1
9		Project Stage – I	0	0	6	3
		Total Credits	14	0	10	21

IV YEAR II SEMESTER

S. No.	Course Code	Course Title	L	т	Ρ	Credits
1		Organizational Behaviour	3	0	0	3
2		Professional Elective – VI	3	0	0	3
3		Open Elective – III	3	0	0	3
4		Project Stage – II	0	0	14	7
		Total Credits	9	0	14	16

*Note: Industrial Oriented Mini Project/ Summer Internship is to be carried out during the summer vacation between 6th and 7th semesters. Students should submit report of Industrial Oriented Mini Project/ Summer Internship for evaluation.

MC - Environmental Science – Should be Registered by Lateral Entry Students Only.

MC – Satisfactory/Unsatisfactory

Professional Elective-I

Data Warehousing and Business Intelligence
Artificial Intelligence
Web Programming
Image Processing
Computer Graphics

Professional Elective - II

Mining Massive Datasets
Information Retrieval Systems
Internet of Things
DevOps
Software Design Methodologies

Professional Elective - III

Object Oriented Analysis & Design
Introduction to Data Science
Scripting Languages
Mobile Application Development
Cryptography and Network Security

[#] Courses in PE - III and PE - III Lab must be in 1-1 correspondence.

Professional Elective - IV

Quantum Computing
Data Visualization Techniques
Natural Language Processing
Information Storage Management
Software Project Management

Professional Elective - V

Privacy Preserving in Data Mining
Cloud Computing
Data Stream Mining
Software Quality Assurance
Exploratory Data Analysis

Professional Elective – VI

Software Metrics
Web security
Computational Complexity
Blockchain Technology
Parallel and Distributed Computing

DESIGN AND ANALYSIS OF ALGORITHMS

B.Tech. III Year I Sem.

Prerequisites:

- 1. A course on "Computer Programming and Data Structures".
- 2. A course on "Advanced Data Structures".

Course Objectives:

- 1. Introduces the notations for analysis of the performance of algorithms.
- 2. Introduces the data structure disjoint sets.
- 3. Describes major algorithmic techniques (divide-and-conquer, backtracking, dynamic programming, greedy, branch and bound methods) and mention problems for which each technique is appropriate;
- 4. Describes how to evaluate and compare different algorithms using worst-, average-, and bestcase analysis.
- 5. Explains the difference between tractable and intractable problems, and introduces the problems that are P, NP and NP complete.

Course Outcomes:

- 1. Ability to analyze the performance of algorithms
- 2. Ability to choose appropriate data structures and algorithm design methods for a specified application
- 3. Ability to understand how the choice of data structures and the algorithm design methods impact the performance of programs

UNIT - I

Introduction: Algorithm, Performance Analysis-Space complexity, Time complexity, Asymptotic Notations- Big oh notation, Omega notation, Theta notation and Little oh notation.

Divide and conquer: General method, applications-Binary search, Quick sort, Merge sort, Strassen's matrix multiplication.

UNIT - II

Disjoint Sets: Disjoint set operations, union and find algorithms

Backtracking: General method, applications, n-queen's problem, sum of subsets problem, graph coloring

UNIT - III

Dynamic Programming: General method, applications- Optimal binary search trees, 0/1 knapsack problem, All pairs shortest path problem, Traveling sales person problem, Reliability design.

UNIT - IV

Greedy method: General method, applications-Job sequencing with deadlines, knapsack problem, Minimum cost spanning trees, Single source shortest path problem.

UNIT - V

Branch and Bound: General method, applications - Travelling sales person problem, 0/1 knapsack problem - LC Branch and Bound solution, FIFO Branch and Bound solution.

NP-Hard and NP-Complete problems: Basic concepts, non-deterministic algorithms, NP - Hard and NP-Complete classes, Cook's theorem.

TEXT BOOK:

1. Fundamentals of Computer Algorithms, Ellis Horowitz, Satraj Sahni and Rajasekharan, University Press.

REFERENCE BOOKS:

- 1. Design and Analysis of algorithms, Aho, Ullman and Hopcroft, Pearson education.
- 2. Introduction to Algorithms, second edition, T. H. Cormen, C.E. Leiserson, R. L. Rivest, and C. Stein, PHI Pvt. Ltd./ Pearson Education.
- 3. Algorithm Design: Foundations, Analysis and Internet Examples, M.T. Goodrich and R. Tamassia, John Wiley and sons.

L T P C 3 0 0 3

L T P C 3 0 0 3

COMPUTER NETWORKS

B.Tech. III Year I Sem.

Prerequisites

- 1. A course on "Programming for problem solving"
- 2. A course on "Data Structures"

Course Objectives

- 1. The objective of the course is to equip the students with a general overview of the concepts and fundamentals of computer networks.
- 2. Familiarize the students with the standard models for the layered approach to communication between machines in a network and the protocols of the various layers.

Course Outcomes

- 1. Gain the knowledge of the basic computer network technology.
- 2. Gain the knowledge of the functions of each layer in the OSI and TCP/IP reference model.
- 3. Obtain the skills of subnetting and routing mechanisms.
- 4. Familiarity with the essential protocols of computer networks, and how they can be applied in network design and implementation.

UNIT - I

Network hardware, Network software, OSI, TCP/IP Reference models, Example Networks: ARPANET, Internet. Physical Layer: Guided Transmission media: twisted pairs, coaxial cable, fiber optics, Wireless transmission.

UNIT - II

Data link layer: Design issues, framing, Error detection and correction.

Elementary data link protocols: simplex protocol, A simplex stop and wait protocol for an error-free channel, A simplex stop and wait protocol for noisy channel.

Sliding Window protocols: A one-bit sliding window protocol, A protocol using Go-Back-N, A protocol using Selective Repeat, Example data link protocols.

Medium Access sub layer: The channel allocation problem, Multiple access protocols: ALOHA, Carrier sense multiple access protocols, collision free protocols. Wireless LANs, Data link layer switching.

UNIT - III

Network Layer: Design issues, Routing algorithms: shortest path routing, Flooding, Hierarchical routing, Broadcast, Multicast, distance vector routing, Congestion Control Algorithms, Quality of Service, Internetworking, The Network layer in the internet.

UNIT - IV

Transport Layer: Transport Services, Elements of Transport protocols, Connection management, TCP and UDP protocols.

UNIT - V

Application Layer –Domain name system, SNMP, Electronic Mail; the World WEB, HTTP, Streaming audio and video.

TEXT BOOK:

1. Computer Networks -- Andrew S Tanenbaum, David. j. Wetherall, 5th Edition. Pearson Education/PHI

- 1. An Engineering Approach to Computer Networks-S. Keshav, 2nd Edition, Pearson Education
- 2. Data Communications and Networking Behrouz A. Forouzan. Third Edition TMH.

DATABASE MANAGEMENT SYSTEMS

B.Tech. III Year I Sem.

L	Т	Ρ	С
3	0	0	3

Prerequisites: A course on "Data Structures".

Course Objectives:

- To understand the basic concepts and the applications of database systems.
- To master the basics of SQL and construct queries using SQL.
- Topics include data models, database design, relational model, relational algebra, transaction control, concurrency control, storage structures and access techniques.

Course Outcomes:

- Gain knowledge of fundamentals of DBMS, database design and normal forms
- Master the basics of SQL for retrieval and management of data.
- Be acquainted with the basics of transaction processing and concurrency control.
- Familiarity with database storage structures and access techniques

UNIT - I

Database System Applications: A Historical Perspective, File Systems versus a DBMS, the Data Model, Levels of Abstraction in a DBMS, Data Independence, Structure of a DBMS

Introduction to Database Design: Database Design and ER Diagrams, Entities, Attributes, and Entity Sets, Relationships and Relationship Sets, Additional Features of the ER Model, Conceptual Design With the ER Model

UNIT - II

Introduction to the Relational Model: Integrity constraint over relations, enforcing integrity constraints, querying relational data, logical data base design, introduction to views, destroying/altering tables and views.

Relational Algebra, Tuple relational Calculus, Domain relational calculus.

UNIT - III

SQL: QUERIES, CONSTRAINTS, TRIGGERS: form of basic SQL query, UNION, INTERSECT, and EXCEPT, Nested Queries, aggregation operators, NULL values, complex integrity constraints in SQL, triggers and active data bases.

Schema Refinement: Problems caused by redundancy, decompositions, problems related to decomposition, reasoning about functional dependencies, FIRST, SECOND, THIRD normal forms, BCNF, lossless join decomposition, multi-valued dependencies, FOURTH normal form, FIFTH normal form.

UNIT - IV

Transaction Concept, Transaction State, Implementation of Atomicity and Durability, Concurrent Executions, Serializability, Recoverability, Implementation of Isolation, Testing for serializability, Lock Based Protocols, Timestamp Based Protocols, Validation- Based Protocols, Multiple Granularity, Recovery and Atomicity, Log–Based Recovery, Recovery with Concurrent Transactions.

UNIT - V

Data on External Storage, File Organization and Indexing, Cluster Indexes, Primary and Secondary Indexes, Index data Structures, Hash Based Indexing, Tree base Indexing, Comparison of File Organizations, Indexes and Performance Tuning, Intuitions for tree Indexes, Indexed Sequential Access Methods (ISAM), B+ Trees: A Dynamic Index Structure.

TEXT BOOKS:

- 1. Database Management Systems, Raghurama Krishnan, Johannes Gehrke, *Tata Mc Graw Hill* 3rd Edition
- 2. Database System Concepts, Silberschatz, Korth, *Mc Graw hill*, V edition.

- 1. Database Systems design, Implementation, and Management, Peter Rob & Carlos Coronel 7th Edition.
- 2. Fundamentals of Database Systems, Elmasri Navrate, Pearson Education
- 3. Introduction to Database Systems, C. J. Date, Pearson Education
- 4. Oracle for Professionals, The X Team, S.Shah and V. Shah, SPD.
- 5. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL, Shah, PHI.
- 6. Fundamentals of Database Management Systems, M. L. Gillenson, *Wiley Student* Edition.

SOFTWARE REQUIREMENTS AND ESTIMATION

B.Tech. III Year I Sem.

Course Objectives:

- 1. Students will author a software requirements document.
- 2. Students will demonstrate an understanding of the proper contents of a software requirements document.
- 3. Students will demonstrate proficiency in software development cost estimation

Course Outcomes:

- 1. Understand the importance of software requirements
- 2. Analyze software requirements management and its principles
- 3. Discuss productivity, estimation factors and approaches for software cost estimation
- 4. Understand tools for Requirements Management and Estimation Requirements Management Tools

UNIT - I

Software Requirements: What and Why Essential Software requirement, Good practices for requirements engineering, improving requirements processes, Software requirements and risk management **Software Requirements Engineering** Requirements elicitation, requirements analysis documentation, review, elicitation techniques, analysis models, Software quality attributes, risk reduction through prototyping, setting requirements priorities, verifying requirements quality.

UNIT - II

Software Requirements Management Requirements Management Principles and practices, Requirements attributes, Change Management Process, Requirements Traceability Matrix, Links in requirements chain **Software Requirements Modeling** Use Case Modeling, Analysis Models, Dataflow diagram, state transition diagram, class diagrams, Object analysis, Problem Frames

UNIT - III

Software Estimation Components of Software Estimations, Estimation methods, Problems associated with estimation, Key project factors that influence estimation

Size Estimation

Two views of sizing, Function Point Analysis, Mark II FPA, Full Function Points, LOC Estimation, Conversion between size measures.

UNIT - IV

Effort, Schedule and Cost Estimation What is Productivity? Estimation Factors, Approaches to Effort and Schedule Estimation, COCOMO II, Putnam Estimation Model, Algorithmic models, Cost Estimation

UNIT - V

Tools for Requirements Management and Estimation Requirements Management Tools: Benefits of using a requirements management tool, commercial requirements management tool, Rational Requisite pro, Caliber – RM, implementing requirements management automation, **Software Estimation Tools:** Desirable features in software estimation tools, IFPUG, USC's COCOMO II, SLIM (Software Life Cycle Management) Tools

TEXT BOOK:

1. Software Requirements and Estimation by Rajesh Naik and Swapna Kishore, Tata McGraw Hill.

L	Т	Ρ	С
3	0	0	3

- 1. Software Requirements by Karl E. Weigers, Microsoft Press.
- 2. Managing Software Requirements, Dean Leffingwell & Don Widrig, Pearson Education, 2003.
- 3. Mastering the requirements process, second edition, Suzanne Robertson & James Robertson, Pearson Education, 2006.
- 4. Estimating Software Costs, Second edition, Capers Jones, TMH, 2007.
- 5. Practical Software Estimation, M.A. Parthasarathy, Pearson Education, 2007.
- 6. Measuring the software process, William A. Florac & Anita D. Carleton, Pearson Education, 1999.

DATA WAREHOUSING AND BUSINESS INTELLIGENCE (Professional Elective - I)

B.Tech. III Year I Sem.	L	т	Ρ	С
	3	0	0	3

Course Objectives:

- 1. This course is concerned with extracting data from the information systems that deal with the day-to-day operations and transforming it into data that can be used by businesses to drive high-level decision making
- 2. Students will learn how to design and create a data warehouse, and how to utilize the process of extracting, transforming, and loading (ETL) data into data warehouses.

Course Outcomes:

- 1. Understand architecture of data warehouse and OLAP operations.
- 2. Understand Fundamental concepts of BI and Analytics
- 3. Application of BI Key Performance indicators
- 4. Design of Dashboards, Implementation of Web Analytics
- 5. Understand Utilization of Advanced BI Tools and their Implementation.
- 6. Implementation of BI Techniques and BI Ethics.

UNIT - I

Data Warehouse: Data Warehouse-Data Warehouse Architecture- Multidimensional Data Model-Data cube and OLAP Technology-Data Warehouse Implementation -DBMS schemas for Decision support - Efficient methods for Data cube computation.

UNIT - II

Business Intelligence: Introduction – Definition, Leveraging Data and Knowledge for BI, BI Components, BI Dimensions, Information Hierarchy, Business Intelligence and Business Analytics. BI Life Cycle. Data for BI - Data Issues and Data Quality for BI.

UNIT - III

BI Implementation - Key Drivers, Key Performance Indicators and Performance Metrics, BI Architecture/Framework, Best Practices, Business Decision Making, Styles of BI-vent-Driven alerts-A cyclic process of Intelligence Creation. The value of Business intelligence -Value driven and Information use.

UNIT - IV

Advanced BI – Big Data and BI, Social Networks, Mobile BI, emerging trends, Description of different BI-Tools (Pentaho, KNIME)

UNIT - V

Business intelligence implementation-Business Intelligence and integration implementation-connecting in BI systems- Issues of legality- Privacy and ethics- Social networking and BI.

TEXT BOOKS:

- 1. Data Mining Concepts and Techniques JIAWEI HAN & MICHELINE KAMBER, Elsevier.
- 2. Rajiv Sabherwal "Business Intelligence" Wiley Publications, 2012.

REFERENCE BOOKS:

1. Efraim Turban, Ramesh Sharda, Jay Aronson, David King, Decision Support and Business Intelligence Systems, 9th Edition, Pearson Education, 2009.

- 2. David Loshin, Business Intelligence The Savy Manager's Guide Getting Onboard with Emerging IT, Morgan Kaufmann Publishers, 2009.
- 3. Philo Janus, Stacia Misner, Building Integrated Business Intelligence Solutions with SQL Server, 2008 R2 & Office 2010, TMH, 2011.
- 4. Business Intelligence Data Mining and Optimization for decision making [Author: Carlo-Verellis] [Publication: (Wiley)]
- 5. Data Warehousing, Data Mining & OLAP- Alex Berson and Stephen J. Smith- Tata McGraw-Hill Edition, Tenth reprint 2007
- 6. Building the Data Warehouse- W. H. Inmon, Wiley Dreamtech India Pvt. Ltd.
- 7. Data Mining Introductory and Advanced topics -MARGARET H DUNHAM, PEA

ARTIFICIAL INTELLIGENCE (Professional Elective - I)

B.Tech. III Year I Sem.

L	Т	Ρ	С
3	0	0	3

Prerequisites:

- 1. A course on "Computer Programming and Data Structures"
- 2. A course on "Advanced Data Structures"
- 3. A course on "Design and Analysis of Algorithms"
- 4. A course on "Mathematical Foundations of Computer Science"
- 5. Some background in linear algebra, data structures and algorithms, and probability will all be helpful

Course Objectives:

- 1. To learn the distinction between optimal reasoning Vs. human like reasoning
- 2. To understand the concepts of state space representation, exhaustive search, heuristic search together with the time and space complexities.
- 3. To learn different knowledge representation techniques.
- 4. To understand the applications of AI, namely game playing, theorem proving, and machine learning.

Course Outcomes:

- 1. Ability to formulate an efficient problem space for a problem expressed in natural language.
- 2. Select a search algorithm for a problem and estimate its time and space complexities.
- 3. Possess the skill for representing knowledge using the appropriate technique for a given problem.
- 4. Possess the ability to apply AI techniques to solve problems of game playing, and machine learning.

UNIT - I

Problem Solving by Search-I: Introduction to AI, Intelligent Agents

Problem Solving by Search –II: Problem-Solving Agents, Searching for Solutions, Uninformed Search Strategies: Breadth-first search, Uniform cost search, Depth-first search, Iterative deepening Depth-first search, Bidirectional search, Informed (Heuristic) Search Strategies: Greedy best-first search, A* search, Heuristic Functions, Beyond Classical Search: Hill-climbing search, Simulated annealing search, Local Search in Continuous Spaces, Searching with Non-Deterministic Actions, Searching wih Partial Observations, Online Search Agents and Unknown Environment.

UNIT - II

Problem Solving by Search-II and Propositional Logic

Adversarial Search: Games, Optimal Decisions in Games, Alpha–Beta Pruning, Imperfect Real-Time Decisions.

Constraint Satisfaction Problems: Defining Constraint Satisfaction Problems, Constraint Propagation, Backtracking Search for CSPs, Local Search for CSPs, The Structure of Problems.

Propositional Logic: Knowledge-Based Agents, The Wumpus World, Logic, Propositional Logic, Propositional Theorem Proving: Inference and proofs, Proof by resolution, Horn clauses and definite clauses, Forward and backward chaining, Effective Propositional Model Checking, Agents Based on Propositional Logic.

UNIT - III

Logic and Knowledge Representation

First-Order Logic: Representation, Syntax and Semantics of First-Order Logic, Using First-Order Logic, Knowledge Engineering in First-Order Logic.

Inference in First-Order Logic: Propositional vs. First-Order Inference, Unification and Lifting, Forward Chaining, Backward Chaining, Resolution.

Knowledge Representation: Ontological Engineering, Categories and Objects, Events. Mental Events and Mental Objects, Reasoning Systems for Categories, Reasoning with Default Information.

UNIT - IV

Planning

Classical Planning: Definition of Classical Planning, Algorithms for Planning with State-Space Search, Planning Graphs, other Classical Planning Approaches, Analysis of Planning approaches.

Planning and Acting in the Real World: Time, Schedules, and Resources, Hierarchical Planning, Planning and Acting in Nondeterministic Domains, Multi agent Planning.

UNIT - V

Uncertain knowledge and Learning

Uncertainty: Acting under Uncertainty, Basic Probability Notation, Inference Using Full Joint Distributions, Independence, Bayes' Rule and Its Use,

Probabilistic Reasoning: Representing Knowledge in an Uncertain Domain, The Semantics of Bayesian Networks, Efficient Representation of Conditional Distributions, Approximate Inference in Bayesian Networks, Relational and First-Order Probability, Other Approaches to Uncertain Reasoning; Dempster-Shafer theory.

Learning: Forms of Learning, Supervised Learning, Learning Decision Trees. Knowledge in Learning: Logical Formulation of Learning, Knowledge in Learning, Explanation-Based Learning, Learning Using Relevance Information, Inductive Logic Programming.

TEXT BOOK:

1. Artificial Intelligence A Modern Approach, Third Edition, Stuart Russell and Peter Norvig, Pearson Education.

- 1. Artificial Intelligence, 3rd Edn, E. Rich and K.Knight (TMH)
- 2. Artificial Intelligence, 3rd Edn., Patrick Henny Winston, Pearson Education.
- 3. Artificial Intelligence, Shivani Goel, Pearson Education.
- 4. Artificial Intelligence and Expert systems Patterson, Pearson Education.

WEB PROGRAMMING (Professional Elective - I)

B.Tech. III Year I Sem.

Course Objectives: The student should be able to:

- 1. Understand the technologies used in Web Programming.
- 2. Know the importance of object-oriented aspects of Scripting.
- 3. Understand creating database connectivity using JDBC.
- 4. Learn the concepts of web-based applications using sockets.

Course Outcomes: Upon Completion of the course, the students will be able to:

- 1. Design web pages.
- 2. Use technologies of Web Programming.
- 3. Apply object-oriented aspects to Scripting.
- 4. Create databases with connectivity using JDBC.
- 5. Build web-based applications using sockets.

UNIT - I

SCRIPTING: Web page Designing using HTML, Scripting basics- Client side and server-side scripting. Java ScriptObject, names, literals, operators and expressions- statements and features- events - windows - documents - frames - data types - built-in functions- Browser object model - Verifying forms - HTML5- CSS3- HTML 5 canvas - Web site creation using tools.

UNIT – II

JAVA: Introduction to object-oriented programming-Features of Java – Data types, variables and arrays –Operators – Control statements – Classes and Methods – Inheritance. Packages and Interfaces – Exception Handling – Multithreaded Programming – Input/Output – Files – Utility Classes – String Handling.

UNIT – III

JDBC: JDBC Overview – JDBC implementation – Connection class – Statements - Catching Database Results, handling database Queries. Networking– InetAddress class – URL class- TCP sockets – UDP sockets, Java Beans – RMI.

UNIT – IV

APPLETS: Java applets- Life cycle of an applet – Adding images to an applet – Adding sound to an applet. Passing parameters to an applet. Event Handling. Introducing AWT: Working with Windows Graphics and Text. Using AWT Controls, Layout Managers and Menus. Servlet – life cycle of a servlet. The Servlet API, Handling HTTP Request and Response, using Cookies, Session Tracking. Introduction to JSP.

UNIT – V

XML AND WEB SERVICES: Xml – Introduction-Form Navigation-XML Documents- XSL – XSLT- Web services-UDDI-WSDL-Java web services – Web resources.

TEXT BOOKS:

- 1. Harvey Deitel, Abbey Deitel, Internet and World Wide Web: How to Program 5th Edition.
- 2. Herbert Schildt, Java The Complete Reference, 7th Edition. Tata McGraw- Hill Edition.
- 3. Michael Morrison XML Unleashed Tech media SAMS.

- 1. John Pollock, Javascript A Beginners Guide, 3rd Edition -- Tata McGraw-Hill Edition.
- 2. Keyur Shah, Gateway to Java Programmer Sun Certification, Tata McGraw Hill, 2002.

L	Т	Ρ	С
3	0	0	3

L T P C 3 0 0 3

IMAGE PROCESSING (Professional Elective – I)

B.Tech. III Year I Sem.

Pre-requisites:

- 1. Students are expected to have knowledge in linear signals and systems, Fourier Transform, basic linear algebra, basic probability theory and basic programming techniques; knowledge of Digital Signal Processing is desirable.
- 2. A course on "Computational Mathematics"
- 3. A course on "Computer Oriented Statistical Methods"

Course Objectives:

- 1. Provide a theoretical and mathematical foundation of fundamental Digital Image Processing concepts.
- 2. The topics include image acquisition; sampling and quantization; preprocessing; enhancement; restoration; segmentation; and compression.

Course Outcomes:

- 1. Demonstrate the knowledge of the basic concepts of two-dimensional signal acquisition, sampling, and quantization.
- 2. Demonstrate the knowledge of filtering techniques.
- 3. Demonstrate the knowledge of 2D transformation techniques.
- 4. Demonstrate the knowledge of image enhancement, segmentation, restoration and compression techniques.

UNIT - I

Digital Image Fundamentals: Digital Image through Scanner, Digital Camera. Concept of Gray Levels. Gray Level to Binary Image Conversion. Sampling and Quantization. Relationship between Pixels. Imaging Geometry. 2D Transformations-DFT, DCT, KLT and SVD.

UNIT - II

Image Enhancement in Spatial Domain Point Processing, Histogram Processing, Spatial Filtering, Enhancement in Frequency Domain, Image Smoothing, Image Sharpening.

UNIT - III

Image Restoration Degradation Model, Algebraic Approach to Restoration, Inverse Filtering, Least Mean Square Filters, Constrained Least Squares Restoration, Interactive Restoration.

UNIT - IV

Image Segmentation Detection of Discontinuities, Edge Linking and Boundary Detection, Thresholding, Region Oriented Segmentation.

UNIT - V

Image Compression Redundancies and their Removal Methods, Fidelity Criteria, Image Compression Models, Source Encoder and Decoder, Error Free Compression, Lossy Compression.

TEXT BOOK:

 Digital Image Processing: R.C. Gonzalez & R. E. Woods, Addison Wesley/ Pearson Education, 2nd Ed, 2004.

- 1. Fundamentals of Digital Image Processing: A. K. Jain, PHI.
- 2. Digital Image Processing using MAT LAB: Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins: Pearson Education India, 2004.
- 3. Digital Image Processing: William K. Pratt, John Wilely, 3rd Edition, 2004.

L T P C 3 0 0 3

COMPUTER GRAPHICS (Professional Elective – I)

B.Tech. III Year I Sem.

Prerequisites:

- 1. Familiarity with the theory and use of coordinate geometry and of linear algebra such as matrix multiplication.
- 2. A course on "Computer Programming and Data Structures"

Course Objectives

- 1. The aim of this course is to provide an introduction of fundamental concepts and theory of computer graphics.
- Topics covered include graphics systems and input devices; geometric representations and 2D/3D transformations; viewing and projections; illumination and color models; animation; rendering and implementation; visible surface detection;

Course Outcomes

- 1. Acquire familiarity with the relevant mathematics of computer graphics.
- 2. Be able to design basic graphics application programs, including animation
- 3. Be able to design applications that display graphic images to given specifications

UNIT - I

Introduction: Application areas of Computer Graphics, overview of graphics systems, video-display devices, raster-scan systems, random scan systems, graphics monitors and work stations and input devices

Output primitives: Points and lines, line drawing algorithms (Bresenham's and DDA Algorithm), midpoint circle and ellipse algorithms

Polygon Filling: Scan-line algorithm, boundary-fill and flood-fill algorithms

UNIT - II

2-D geometrical transforms: Translation, scaling, rotation, reflection and shear transformations, matrix representations and homogeneous coordinates, composite transforms, transformations between coordinate systems

2-D viewing: The viewing pipeline, viewing coordinate reference frame, window to view-port coordinate transformation, viewing functions, Cohen-Sutherland algorithms, Sutherland –Hodgeman polygon clipping algorithm.

UNIT - III

3-D object representation: Polygon surfaces, quadric surfaces, spline representation, Hermite curve, Bezier curve and B-Spline curves, Bezier and B-Spline surfaces. Basic illumination models, polygon rendering methods.

UNIT - IV

3-D Geometric transformations: Translation, rotation, scaling, reflection and shear transformations, composite transformations.

3-D viewing: Viewing pipeline, viewing coordinates, view volume and general projection transforms and clipping.

UNIT - V

Computer animation: Design of animation sequence, general computer animation functions, raster animation, computer animation languages, key frame systems, motion specifications

Visible surface detection methods: Classification, back-face detection, depth-buffer, BSP-tree methods and area sub-division methods.

TEXT BOOKS:

- 1. "Computer Graphics C version", Donald Hearn and M. Pauline Baker, Pearson Education
- 2. "Computer Graphics Principles & practice", second edition in C, Foley, Van Dam, Feiner and Hughes, Pearson Education.
- 3. Computer Graphics, Steven Harrington, TMH

- 1. Procedural elements for Computer Graphics, David F Rogers, Tata Mc Graw hill, 2nd edition.
- 2. Principles of Interactive Computer Graphics", Neuman and Sproul, TMH.
- 3. Principles of Computer Graphics, Shalini Govil, Pai, 2005, Springer.

MINING MASSIVE DATASETS (Professional Elective – II)

B.Tech. III Year I Sem.

L	Т	Ρ	С
3	0	0	3

Prerequisites: Students should be familiar with Data mining, algorithms, basic probability theory and Discrete math.

Course Objectives:

- 1. This course will cover practical algorithms for solving key problems in mining of massive datasets.
- 2. This course focuses on parallel algorithmic techniques that are used for large datasets.
- This course will cover stream processing algorithms for data streams that arrive constantly, page ranking algorithms for web search, and online advertisement systems that are studied in detail.

Course Outcomes:

- 1. Handle massive data using MapReduce.
- 2. Develop and implement algorithms for massive data sets and methodologies in the context of data mining.
- 3. Understand the algorithms for extracting models and information from large datasets
- 4. Develop recommendation systems.
- 5. Gain experience in matching various algorithms for particular classes of problems.

UNIT - I

Data Mining-Introduction-Definition of Data Mining-Statistical Limits on Data Mining,

MapReduce and the New Software Stack-Distributed File Systems, MapReduce, Algorithms Using MapReduce.

UNIT - II

Similarity Search: Finding Similar Items-Applications of Near-Neighbor Search, Shingling of Documents, Similarity-Preserving Summaries of Sets, Distance Measures.

Streaming Data: Mining Data Streams-The Stream Data Model, Sampling Data in a Stream, Filtering Streams

UNIT - III

Link Analysis-PageRank, Efficient Computation of PageRank, Link Spam

Frequent Itemsets-Handling Larger Datasets in Main Memory, Limited-Pass Algorithms, Counting Frequent Items in a Stream.

Clustering-The CURE Algorithm, Clustering in Non-Euclidean Spaces, Clustering for Streams and Parallelism

UNIT - IV

Advertising on the Web-Issues in On-Line Advertising, On-Line Algorithms, The Matching Problem, The Adwords Problem, Adwords Implementation.

Recommendation Systems-A Model for Recommendation Systems, Content-Based Recommendations, Collaborative Filtering, Dimensionality Reduction, The NetFlix Challenge.

UNIT - V

Mining Social-Network Graphs-Social Networks as Graphs, Clustering of Social-Network Graphs, Partitioning of Graphs, Simrank, Counting Triangles

TEXT BOOKS:

1. Jure Leskovec, Anand Rajaraman, Jeff Ullman, Mining of Massive Datasets, 3rd Edition.

- 1. Jiawei Han & Micheline Kamber, Data Mining Concepts and Techniques 3rd Edition Elsevier.
- 2. Margaret H Dunham, Data Mining Introductory and Advanced topics, PEA.
- 3. Ian H. Witten and Eibe Frank, Data Mining: Practical Machine Learning Tools and Techniques, Morgan Kaufmann.

L T P C 3 0 0 3

INFORMATION RETRIEVAL SYSTEMS (Professional Elective – II)

B.Tech. III Year I Sem.

Prerequisites: Data Structures.

Course Objectives:

- 1. To learn the important concepts and algorithms in IRS
- 2. To understand the data/file structures that are necessary to design, and implement information retrieval (IR) systems.

Course Outcomes:

- 1. Ability to apply IR principles to locate relevant information large collections of data
- 2. Ability to design different document clustering algorithms
- 3. Implement retrieval systems for web search tasks.
- 4. Design an Information Retrieval System for web search tasks.

UNIT - I

Introduction to Information Retrieval Systems: Definition of Information Retrieval System, Objectives of Information Retrieval Systems, Functional Overview, Relationship to Database Management Systems, Digital Libraries and Data Warehouses

Information Retrieval System Capabilities: Search Capabilities, Browse Capabilities, Miscellaneous Capabilities

UNIT - II

Cataloging and Indexing: History and Objectives of Indexing, Indexing Process, Automatic Indexing, Information Extraction

Data Structure: Introduction to Data Structure, Stemming Algorithms, Inverted File Structure, N-Gram Data Structures, PAT Data Structure, Signature File Structure, Hypertext and XML Data Structures, Hidden Markov Models

UNIT - III

Automatic Indexing: Classes of Automatic Indexing, Statistical Indexing, Natural Language, Concept Indexing, Hypertext Linkages

Document and Term Clustering: Introduction to Clustering, Thesaurus Generation, Item Clustering, Hierarchy of Clusters

UNIT - IV

User Search Techniques: Search Statements and Binding, Similarity Measures and Ranking, Relevance Feedback, Selective Dissemination of Information Search, Weighted Searches of Boolean Systems, Searching the INTERNET and Hypertext

Information Visualization: Introduction to Information Visualization, Cognition and Perception, Information Visualization Technologies

UNIT - V

Text Search Algorithms: Introduction to Text Search Techniques, Software Text Search Algorithms, Hardware Text Search Systems

Multimedia Information Retrieval: Spoken Language Audio Retrieval, Non-Speech Audio Retrieval, Graph Retrieval, Imagery Retrieval, Video Retrieval

TEXT BOOK:

1. Information Storage and Retrieval Systems – Theory and Implementation, Second Edition, Gerald J. Kowalski, Mark T. Maybury, Springer

- 1. Frakes, W.B., Ricardo Baeza-Yates: Information Retrieval Data Structures and Algorithms, Prentice Hall, 1992.
- 2. Information Storage & Retrieval By Robert Korfhage John Wiley & Sons.
- 3. Modern Information Retrieval By Yates and Neto Pearson Education.

INTERNET OF THINGS (Professional Elective – II)

B.Tech. III Year I Sem.

Course Objectives:

- 1. To introduce the terminology, technology and its applications
- 2. To introduce the concept of M2M (machine to machine) with necessary protocols
- 3. To introduce the Python Scripting Language which is used in many IoT devices
- 4. To introduce the Raspberry PI platform, that is widely used in IoT applications
- 5. To introduce the implementation of web-based services on IoT devices

Course Outcomes:

- 1. Interpret the impact and challenges posed by IoT networks leading to new architectural models.
- 2. Compare and contrast the deployment of smart objects and the technologies to connect them to network.
- 3. Appraise the role of IoT protocols for efficient network communication.
- 4. Elaborate the need for Data Analytics and Security in IoT.
- 5. Illustrate different sensor technologies for sensing real world entities and identify the applications of IoT in Industry.

UNIT - I

Introduction to Internet of Things –Definition and Characteristics of IoT, Physical Design of IoT – IoT Protocols, IoT communication models, Iot Communication APIs IoT enabled Technologies – Wireless Sensor Networks, Cloud Computing, Big data analytics, Communication protocols, Embedded Systems, IoT Levels and Templates Domain Specific IoTs – Home, City, Environment, Energy, Retail, Logistics, Agriculture, Industry, health and Lifestyle

UNIT - II

IoT and M2M – Software defined networks, network function virtualization, difference between SDN and NFV for IoT Basics of IoT System Management with NETCOZF, YANG- NETCONF, YANG, SNMP NETOPEER

UNIT - III

Introduction to Python - Language features of Python, Data types, data structures, Control of flow, functions, modules, packaging, file handling, data/time operations, classes, Exception handling Python packages - JSON, XML, HTTPLib, URLLib, SMTPLib

UNIT - IV

IoT Physical Devices and Endpoints - Introduction to Raspberry PI-Interfaces (serial, SPI, I2C) Programming – Python program with Raspberry PI with focus of interfacing external gadgets, controlling output, reading input from pins.

UNIT - V

IoT Physical Servers and Cloud Offerings – Introduction to Cloud Storage models and communication APIs Webserver – Web server for IoT, Cloud for IoT, Python web application framework Designing a RESTful web API

TEXT BOOKS:

- 1. Internet of Things A Hands-on Approach, Arshdeep Bahga and Vijay Madisetti, Universities Press, 2015, ISBN: 9788173719547
- 2. Getting Started with Raspberry Pi, Matt Richardson & Shawn Wallace, O'Reilly (SPD), 2014, ISBN: 9789350239759

L	Т	Ρ	С
3	0	0	3

DEVOPS (Professional Elective – II)

B.Tech. III Year I Sem.

L	Т	Ρ	С
3	0	0	3

Course Objectives: The main objectives of this course are to

- 1. Describe the agile relationship between development and IT operations.
- 2. Understand the skill sets and high-functioning teams involved in DevOps and related methods to reach a continuous delivery capability
- 3. Implement automated system update and DevOps lifecycle

Course Outcomes: On successful completion of this course, students will be able to:

- 1. Identify components of Devops environment
- 2. Describe Software development models and architectures of DevOps
- 3. Apply different project management, integration, testing and code deployment tool
- 4. Investigate different DevOps Software development models
- 5. Assess various Devops practices
- 6. Collaborate and adopt Devops in real-time projects

UNIT - I

Introduction: Introduction, Agile development model, DevOps, and ITIL. DevOps process and Continuous Delivery, Release management, Scrum, Kanban, delivery pipeline, bottlenecks, examples

UNIT - II

Software development models and DevOps: DevOps Lifecycle for Business Agility, DevOps, and Continuous Testing.

DevOps influence on Architecture: Introducing software architecture, The monolithic scenario, Architecture rules of thumb, The separation of concerns, Handling database migrations, Microservices, and the data tier, DevOps, architecture, and resilience.

UNIT - III

Introduction to project management: The need for source code control, The history of source code management, Roles and code, source code management system and migrations, Shared authentication, Hosted Git servers, Different Git server implementations, Docker intermission, Gerrit, The pull request model, GitLab.

UNIT - IV

Integrating the system: Build systems, Jenkins build server, Managing build dependencies, Jenkins plugins, and file system layout, The host server, Build slaves, Software on the host, Triggers, Job chaining and build pipelines, Build servers and infrastructure as code, Building by dependency order, Build phases, Alternative build servers, Collating quality measures.

UNIT - V

Testing Tools and automation: Various types of testing, Automation of testing Pros and cons, Selenium - Introduction, Selenium features, JavaScript testing, Testing backend integration points, Test-driven development, REPL-driven development

Deployment of the system: Deployment systems, Virtualization stacks, code execution at the client, Puppet master and agents, Ansible, Deployment tools: Chef, Salt Stack and Docker

TEXT BOOKS:

- 1. Joakim Verona. Practical Devops, Second Edition. Ingram short title; 2nd edition (2018). ISBN-10: 1788392574
- 2. Deepak Gaikwad, Viral Thakkar. DevOps Tools from Practitioner's Viewpoint. Wiley publications. ISBN: 9788126579952

REFERENCE BOOK:

1. Len Bass, Ingo Weber, Liming Zhu. DevOps: A Software Architect's Perspective. Addison Wesley; ISBN-10.

SOFTWARE DESIGN METHODOLOGIES (Professional Elective – II)

B.Tech. III Year I Sem.	L	т	Ρ	С
	3	0	0	3

Prerequisite: Software Engineering.

Course Objectives:

- 1. To develop in students the knowledge, understanding, skills and values to solve problems through the creation of software solutions
- 2. To design and experiment with software prototypes
- 3. To elicit, analyze and specify software requirements through a productive working relationship with project stakeholders.
- 4. To build solutions using different technologies, architectures and life-cycle approaches.

Course Outcomes:

- 1. Understanding of the historical developments that have led to current practices in software design and development, and of emerging trends and technologies in this field.
- 2. Acquiring and applying the skills in designing and developing software solutions.
- 3. Acquiring and using the skills required to schedule a software project.

UNIT - I

Software Requirements: Functional and non-functional requirements, User requirements, System requirements, Interface specification, the software requirements document.

Requirements engineering process: Feasibility studies, Requirements elicitation and analysis, Requirements validation, Requirements management.

UNIT - II

Software Design: The nature of the design process, transferring design knowledge, constraints upon the design process and product, recording design decisions, designing with others, context for design, economic factors, assessing design qualities, quality attributes of the design product, assessing the design process. Representing abstract ideas, design viewpoints, the architecture concept, design methods, design patterns, design representations, rationale for design methods.

Design Processes and Strategies: The role of strategy in design methods, describing the design process – The D – Matrix, design by top-down decomposition, design by composition, organizational influences upon design.

UNIT - III

Designing with objects and components: Designing with objects: Design practices for objectoriented paradigm, Object-oriented paradigm, Object-oriented frameworks, Hierarchical object-oriented design process and heuristics, the fusion method, the unified process.

Component - based design: The component concept, designing with components, designing components, COTS.

User Interface design: The Golden rules, Interface analysis and design models, user and task analysis, analysis of display content and work environment, applying interface design issues, design evaluation.

UNIT - IV

Concepts of Software Projects: Project Management: The management spectrum: people, product, process and project, W5HH principle, Critical practices

Metrics for Process and Projects: Process metrics, project metrics, size-oriented metrics, functionoriented metrics, Object-oriented and use-case metrics, metrics for software quality, integrating metrics within software process.

UNIT - V

Project Scheduling and Management:

Project Scheduling: Basic concepts, project scheduling, defining a task set and task network, timeline charts, tracking the schedule, tracking the progress for an OO project, Earned value analysis.

Risk Management: Reactive Vs. Proactive risk strategies, software risks, risk identification, risk projection, risk refinement, risk mitigation and monitoring, the RMMM plan.

TEXT BOOKS:

- 1. Software design, David Budgen, second edition, Pearson education, 2003.
- 2. Software Engineering: A practitioner's Approach, Roger S Pressman, sixth edition. McGraw Hill International Edition, 2005.

- 1. Applying domain- driven design and patterns, jimmy Nilsson, Pearson education, 2006.
- 2. Software Engineering Foundations, Ian Sommerville, seventh edition, Pearson education, 2004.
- 3. Software Project Management, Bob Hughes & Mike Cotterell, Fourth edition, Tata Mc Graw Engineering: A Primer, Waman S Jawadekar, Tata McGraw-Hill, 2008.
- 4. The Art of Project Management, Scott Berkun, O'Reilly, 2005.
- 5. Software Engineering, Project Management, Richard H. Thayer & Edward Yourdon, second edition, Wiley India, 2004.
- 6. Software Engineering foundations, Yingxu Wang Auerbach publications, 2008.
- 7. Applied Software Project Management, Andrew Stellman & Jennifer Greene, O'Reilly, 2006.

COMPUTER NETWORKS LAB

B.Tech. III Year I Sem.

L T P C 0 0 3 1.5

Course Objectives:

- 1. To understand the working principle of various communication protocols.
- 2. To understand the network simulator environment and visualize a network topology and observe its performance
- 3. To analyze the traffic flow and the contents of protocol frames

Course Outcomes:

- 1. Implement data link layer farming methods
- 2. Analyze error detection and error correction codes.
- 3. Implement and analyze routing and congestion issues in network design.
- 4. Implement Encoding and Decoding techniques used in presentation layer
- 5. To be able to work with different network tools

List of Experiments

- 1. Implement the data link layer framing methods such as character, character-stuffing and bit stuffing.
- 2. Write a program to compute CRC code for the polynomials CRC-12, CRC-16 and CRC CCIP
- 3. Develop a simple data link layer that performs the flow control using the sliding window protocol, and loss recovery using the Go-Back-N mechanism.
- 4. Implement Dijsktra's algorithm to compute the shortest path through a network
- 5. Take an example subnet of hosts and obtain a broadcast tree for the subnet.
- 6. Implement distance vector routing algorithm for obtaining routing tables at each node.
- 7. Implement data encryption and data decryption
- 8. Write a program for congestion control using Leaky bucket algorithm.
- 9. Write a program for frame sorting techniques used in buffers.
- 10. Wireshark
 - i. Packet Capture Using Wire shark
 - ii. Starting Wire shark
 - iii. Viewing Captured Traffic
 - iv. Analysis and Statistics & Filters.
- 11. How to run Nmap scan
- 12. Operating System Detection using Nmap
- 13. Do the following using NS2 Simulator
 - i. NS2 Simulator-Introduction
 - ii. Simulate to Find the Number of Packets Dropped
 - iii. Simulate to Find the Number of Packets Dropped by TCP/UDP
 - iv. Simulate to Find the Number of Packets Dropped due to Congestion
 - v. Simulate to Compare Data Rate& Throughput.
 - vi. Simulate to Plot Congestion for Different Source/Destination
 - vii. Simulate to Determine the Performance with respect to Transmission of Packets

TEXT BOOK:

1. Computer Networks, Andrew S Tanenbaum, David. j. Wetherall, 5th Edition. Pearson Education/PHI

- 1. An Engineering Approach to Computer Networks, S.Keshav, 2nd Edition, Pearson Education
- 2. Data Communications and Networking Behrouz A. Forouzan. 3rd Edition, TMH.

DATABASE MANAGEMENT SYSTEMS LAB

B.Tech. III Year I Sem.

L	Т	Ρ	С
0	0	3	1.5

Co-requisites: Course on Database Management Systems.

Course Objectives:

- 1. Introduce ER data model, database design and normalization
- 2. Learn SQL basics for data definition and data manipulation

Course Outcomes:

- 1. Design database schema for a given application and apply normalization
- 2. Acquire skills in using SQL commands for data definition and data manipulation.
- 3. Develop solutions for database applications using procedures, cursors and triggers

List of Experiments:

- 1. Concept design with E-R Model
- 2. Relational Model
- 3. Normalization
- 4. Practicing DDL commands
- 5. Practicing DML commands
- 6. Querying (using ANY, ALL, IN, Exists, NOT EXISTS, UNION, INTERSECT, Constraints etc.)
- 7. Queries using Aggregate functions, GROUP BY, HAVING and Creation and dropping of Views.
- 8. Triggers (Creation of insert trigger, delete trigger, update trigger)
- 9. Procedures
- 10. Usage of Cursors

TEXT BOOKS:

- 1. Database Management Systems, Raghurama Krishnan, Johannes Gehrke, Tata Mc Graw Hill, 3rd Edition
- 2. Database System Concepts, Silberschatz, Korth, McGraw Hill, V edition.

- 1. Database Systems design, Implementation, and Management, Peter Rob & Carlos Coronel 7th Edition.
- 2. Fundamentals of Database Systems, Elmasri Navrate, Pearson Education
- 3. Introduction to Database Systems, C.J. Date, Pearson Education
- 4. Oracle for Professionals, The X Team, S. Shah and V. Shah, SPD.
- 5. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL, Shah, PHI.
- 6. Fundamentals of Database Management Systems, M. L. Gillenson, Wiley Student Edition.

ADVANCED COMMUNICATION SKILLS LAB

B.Tech. III Year I Sem.	L	т	Ρ	С
	0	0	2	1

1. INTRODUCTION:

The introduction of the Advanced Communication Skills Lab is considered essential at 3rd year level. At this stage, the students need to prepare themselves for their careers which may require them to listen to, read, speak and write in English both for their professional and interpersonal communication in the globalized context.

The proposed course should be a laboratory course to enable students to use 'good' English and perform the following:

- Gathering ideas and information to organize ideas relevantly and coherently.
- Engaging in debates.
- Participating in group discussions.
- Facing interviews.
- Writing project/research reports/technical reports.
- Making oral presentations.
- Writing formal letters.
- Transferring information from non-verbal to verbal texts and vice-versa.
- Taking part in social and professional communication.

2. OBJECTIVES:

This Lab focuses on using multi-media instruction for language development to meet the following targets:

- To improve the students' fluency in English, through a well-developed vocabulary and enable them to listen to English spoken at normal conversational speed by educated English speakers and respond appropriately in different socio-cultural and professional contexts.
- Further, they would be required to communicate their ideas relevantly and coherently in writing.
- To prepare all the students for their placements.

3. SYLLABUS:

The following course content to conduct the activities is prescribed for the Advanced English Communication Skills (AECS) Lab:

- Activities on Fundamentals of Inter-personal Communication and Building Vocabulary -Starting a conversation – responding appropriately and relevantly – using the right body language – Role Play in different situations & Discourse Skills- using visuals - Synonyms and antonyms, word roots, one-word substitutes, prefixes and suffixes, study of word origin, business vocabulary, analogy, idioms and phrases, collocations & usage of vocabulary.
- 2. Activities on Reading Comprehension –General Vs Local comprehension, reading for facts, guessing meanings from context, scanning, skimming, inferring meaning, critical reading& effective googling.
- 3. Activities on Writing Skills Structure and presentation of different types of writing *letter* writing/Resume writing/ e-correspondence/Technical report writing/ planning for writing improving one's writing.
- Activities on Presentation Skills Oral presentations (individual and group) through JAM sessions/seminars/<u>PPTs</u> and written presentations through posters/projects/reports/ e-mails/assignments etc.
- Activities on Group Discussion and Interview Skills Dynamics of group discussion, intervention, summarizing, modulation of voice, body language, relevance, fluency and organization of ideas and rubrics for evaluation- Concept and process, pre-interview planning, opening strategies, answering strategies, interview through tele-conference & video-conference and Mock Interviews.

4. MINIMUM REQUIREMENT:

The Advanced English Communication Skills (AECS) Laboratory shall have the following infrastructural facilities to accommodate at least 35 students in the lab:

- Spacious room with appropriate acoustics.
- Round Tables with movable chairs
- Audio-visual aids
- LCD Projector
- Public Address system
- P IV Processor, Hard Disk 80 GB, RAM-512 MB Minimum, Speed 2.8 GHZ
- T. V, a digital stereo & Camcorder
- Headphones of High quality

5. SUGGESTED SOFTWARE:

The software consisting of the prescribed topics elaborated above should be procured and used.

- Oxford Advanced Learner's Compass, 7th Edition
- DELTA's key to the Next Generation TOEFL Test: Advanced Skill Practice.
- Lingua TOEFL CBT Insider, by Dream tech
- TOEFL & GRE (KAPLAN, AARCO & BARRONS, USA, Cracking GRE by CLIFFS)

TEXT BOOKS:

- Effective Technical Communication by M Asharaf Rizvi. McGraw Hill Education (India) Pvt. Ltd. 2nd Edition
- Academic Writing: A Handbook for International Students by Stephen Bailey, Routledge, 5th Edition.

- 1. Learn Correct English A Book of Grammar, Usage and Composition by Shiv K. Kumar and Hemalatha Nagarajan. Pearson 2007
- 2. Professional Communication by Aruna Koneru, McGraw Hill Education (India) Pvt. Ltd, 2016.
- 3. Technical Communication by Meenakshi Raman & Sangeeta Sharma, Oxford University Press 2009.
- 4. Technical Communication by Paul V. Anderson. 2007. Cengage Learning pvt. Ltd. New Delhi.
- 5. English Vocabulary in Use series, Cambridge University Press 2008.
- 6. Handbook for Technical Communication by David A. McMurrey & Joanne Buckley. 2012. Cengage Learning.
- 7. Communication Skills by Leena Sen, PHI Learning Pvt Ltd., New Delhi, 2009.
- 8. Job Hunting by Colm Downes, Cambridge University Press 2008.
- 9. English for Technical Communication for Engineering Students, Aysha Vishwamohan, Tata Mc Graw-Hill 2009.

INTELLECTUAL PROPERTY RIGHTS

B.Tech. III Year I Sem.

L	Т	Ρ	С
3	0	0	0

UNIT – I

Introduction to Intellectual property: Introduction, types of intellectual property, international organizations, agencies and treaties, importance of intellectual property rights.

UNIT – II

Trade Marks: Purpose and function of trademarks, acquisition of trade mark rights, protectable matter, selecting, and evaluating trade mark, trade mark registration processes.

UNIT – III

Law of copy rights: Fundamental of copy right law, originality of material, rights of reproduction, rights to perform the work publicly, copy right ownership issues, copy right registration, notice of copy right, international copy right law.

Law of patents: Foundation of patent law, patent searching process, ownership rights and transfer

UNIT – IV

Trade Secrets: Trade secrete law, determination of trade secrete status, liability for misappropriations of trade secrets, protection for submission, trade secrete litigation.

Unfair competition: Misappropriation right of publicity, false advertising.

UNIT – V

New development of intellectual property: new developments in trade mark law; copy right law, patent law, intellectual property audits.

International overview on intellectual property, international – trade mark law, copy right law, international patent law, and international development in trade secrets law.

TEXT & REFERENCE BOOKS:

- 1. Intellectual property right, Deborah. E. Bouchoux, Cengage learning.
- 2. Intellectual property right Unleashing the knowledge economy, prabuddha ganguli, Tata McGraw Hill Publishing company ltd.