JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech. in COMPUTER SCIENCE AND ENGINEERING COURSE STRUCTURE & SYLLABUS (R18)

Applicable From 2018-19 Admitted Batch

I YEAR I SEMESTER

S. No.	Course Code	Course Title	L	Т	Р	Credits
1	MA101BS	Mathematics - I	3	1	0	4
2	CH102BS	Chemistry	3	1	0	4
3	EE103ES	Basic Electrical Engineering	3	0	0	3
4	ME105ES	Engineering Workshop	1	0	3	2.5
5	EN105HS	English	2	0	0	2
6	CH106BS	Engineering Chemistry Lab	0	0	3	1.5
7	EN107HS	English Language and Communication Skills Lab	0	0	2	1
8	EE108ES	Basic Electrical Engineering Lab	0	0	2	1
		Induction Programme				
		Total Credits	12	2	10	19

I YEAR II SEMESTER

S. No.	Course Code	Course Title	L	Т	Р	Credits
1	MA201BS	Mathematics - II	3	1	0	4
2	AP202BS	Applied Physics	3	1	0	4
3	CS203ES	Programming for Problem Solving	3	1	0	4
4	ME204ES	Engineering Graphics	1	0	4	3
5	AP205BS	Applied Physics Lab	0	0	3	1.5
6	CS206ES	Programming for Problem Solving Lab	0	0	3	1.5
7	*MC209ES	Environmental Science	3	0	0	0
		Total Credits	13	3	10	18

II YEAR I SEMESTER

S. No.	Course Code	Course Title	L	Т	Р	Credits
1	CS301ES	Analog and Digital Electronics	3	0	0	3
2	CS302PC	Data Structures	3	1	0	4
3	MA303BS	Computer Oriented Statistical Methods	3	1	0	4
4	CS304PC	Computer Organization and Architecture	3	0	0	3
5	CS305PC	Object Oriented Programming using C++	2	0	0	2
6	CS306ES	Analog and Digital Electronics Lab	0	0	2	1
7	CS307PC	Data Structures Lab	0	0	3	1.5
8	CS308PC	IT Workshop Lab	0	0	3	1.5
9	CS309PC	C++ Programming Lab	0	0	2	1
10	*MC309	Gender Sensitization Lab	0	0	2	0
		Total Credits	14	2	12	21

CS301ES: ANALOG AND DIGITAL ELECTRONICS

B.TECH II Year I Sem.

L T P C 3 0 0 3

Course Objectives:

- To introduce components such as diodes, BJTs and FETs.
- To know the applications of components.
- To give understanding of various types of amplifier circuits
- To learn basic techniques for the design of digital circuits and fundamental concepts used in the design of digital systems.
- To understand the concepts of combinational logic circuits and sequential circuits.

Course Outcomes: Upon completion of the Course, the students will be able to:

- Know the characteristics of various components.
- Understand the utilization of components.
- Design and analyze small signal amplifier circuits.
- Learn Postulates of Boolean algebra and to minimize combinational functions
- Design and analyze combinational and sequential circuits
- Know about the logic families and realization of logic gates.

UNIT - I

Diodes and Applications: Junction diode characteristics: Open circuited p-n junction, p-n junction as a rectifier, V-I characteristics, effect of temperature, diode resistance, diffusion capacitance, diode switching times, breakdown diodes, Tunnel diodes, photo diode, LED.

Diode Applications - clipping circuits, comparators, Half wave rectifier, Full wave rectifier, rectifier with capacitor filter.

UNIT - II

BJTs: Transistor characteristics: The junction transistor, transistor as an amplifier, CB, CE, CC configurations, comparison of transistor configurations, the operating point, self-bias or Emitter bias, bias compensation, thermal runaway and stability, transistor at low frequencies, CE amplifier response, gain bandwidth product, Emitter follower, RC coupled amplifier, two cascaded CE and multi stage CE amplifiers.

UNIT - III

FETs and Digital Circuits: FETs: JFET, V-I characteristics, MOSFET, low frequency CS and CD amplifiers, CS and CD amplifiers.

Digital Circuits: Digital (binary) operations of a system, OR gate, AND gate, NOT, EXCLUSIVE OR gate, De Morgan Laws, NAND and NOR DTL gates, modified DTL gates, HTL and TTL gates, output stages, RTL and DCTL, CMOS, Comparison of logic families.

UNIT - IV

Combinational Logic Circuits: Basic Theorems and Properties of Boolean Algebra, Canonical and Standard Forms, Digital Logic Gates, The Map Method, Product-of-Sums Simplification, Don't-Care Conditions, NAND and NOR Implementation, Exclusive-OR Function, Binary Adder-Subtractor, Decimal Adder, Binary Multiplier, Magnitude Comparator, Decoders, Encoders, Multiplexers.

UNIT - V

Sequential Logic Circuits: Sequential Circuits, Storage Elements: Latches and flip flops, Analysis of Clocked Sequential Circuits, State Reduction and Assignment, Shift Registers, Ripple Counters, Synchronous Counters, Random-Access Memory, Read-Only Memory.

TEXTBOOKS:

- 1. Integrated Electronics: Analog and Digital Circuits and Systems, 2/e, Jaccob Millman, Christos Halkias and Chethan D. Parikh, *Tata McGraw-Hill Education*, India, 2010.
- 2. Digital Design, 5/e, Morris Mano and Michael D. Cilette, Pearson, 2011.

- 1. Electronic Devices and Circuits, Jimmy J Cathey, Schaum's outline series, 1988.
- 2. Digital Principles, 3/e, Roger L. Tokheim, Schaum's outline series, 1994.

CS302PC: DATA STRUCTURES

B.TECH II Year I Sem. L T P C 3 1 0 4

Prerequisites: A course on "Programming for Problem Solving".

Course Objectives:

- Exploring basic data structures such as stacks and queues.
- Introduces a variety of data structures such as hash tables, search trees, tries, heaps, graphs.
- Introduces sorting and pattern matching algorithms

Course Outcomes:

- Ability to select the data structures that efficiently model the information in a problem.
- Ability to assess efficiency trade-offs among different data structure implementations or combinations
- Implement and know the application of algorithms for sorting and pattern matching.
- Design programs using a variety of data structures, including hash tables, binary and general tree structures, search trees, tries, heaps, graphs, and AVL-trees.

UNIT - I

Introduction to Data Structures, abstract data types, Linear list – singly linked list implementation, insertion, deletion and searching operations on linear list, Stacks-Operations, array and linked representations of stacks, stack applications, Queues-operations, array and linked representations.

UNIT - II

Dictionaries: linear list representation, skip list representation, operations - insertion, deletion and searching.

Hash Table Representation: hash functions, collision resolution-separate chaining, open addressing-linear probing, quadratic probing, double hashing, rehashing, extendible hashing.

UNIT - III

Search Trees: Binary Search Trees, Definition, Implementation, Operations- Searching, Insertion and Deletion, AVL Trees, Definition, Height of an AVL Tree, Operations – Insertion, Deletion and Searching, Red –Black, Splay Trees.

UNIT - IV

Graphs: Graph Implementation Methods. Graph Traversal Methods.

Sorting: Heap Sort, External Sorting- Model for external sorting, Merge Sort.

UNIT - V

Pattern Matching and Tries: Pattern matching algorithms-Brute force, the Boyer –Moore algorithm, the Knuth-Morris-Pratt algorithm, Standard Tries, Compressed Tries, Suffix tries.

TEXT BOOKS:

- 1. Fundamentals of Data Structures in C, 2nd Edition, E. Horowitz, S. Sahni and Susan Anderson Freed, Universities Press.
- 2. Data Structures using C A. S. Tanenbaum, Y. Langsam, and M.J. Augenstein, PHI/Pearson Education.

REFERENCE BOOK:

1. Data Structures: A Pseudocode Approach with C, 2nd Edition, R. F. Gilberg and B.A. Forouzan, Cengage Learning.

MA303BS: COMPUTER ORIENTED STATISTICAL METHODS

B.TECH II Year I Sem. L T P C

Pre-requisites: Mathematics courses of first year of study.

Course Objectives: To learn

- The theory of Probability, and probability distributions of single and multiple random variables
- The sampling theory and testing of hypothesis and making inferences
- Stochastic process and Markov chains.

Course Outcomes: After learning the contents of this paper the student must be able to

- Apply the concepts of probability and distributions to some case studies
- Correlate the material of one unit to the material in other units
- Resolve the potential misconceptions and hazards in each topic of study.

UNIT - I

Probability: Sample Space, Events, Counting Sample Points, Probability of an Event, Additive Rules, Conditional Probability, Independence, and the Product Rule, Bayes' Rule.

Random Variables and Probability Distributions: Concept of a Random Variable, Discrete Probability Distributions, Continuous Probability Distributions, Statistical Independence.

UNIT - II

Mathematical Expectation: Mean of a Random Variable, Variance and Covariance of Random Variables, Means and Variances of Linear Combinations of Random Variables, Chebyshev's Theorem. **Discrete Probability Distributions**: Introduction and Motivation, Binomial, Distribution, Geometric Distributions and Poisson distribution.

UNIT - III

Continuous Probability Distributions: Continuous Uniform Distribution, Normal Distribution, Areas under the Normal Curve, Applications of the Normal Distribution, Normal Approximation to the Binomial, Gamma and Exponential Distributions.

Fundamental Sampling Distributions: Random Sampling, Some Important Statistics, Sampling Distributions, Sampling Distribution of Means and the Central Limit Theorem, Sampling Distribution of S2, t—Distribution, F-Distribution.

UNIT - IV

Estimation & Tests of Hypotheses: Introduction, Statistical Inference, Classical Methods of Estimation.: Estimating the Mean, Standard Error of a Point Estimate, Prediction Intervals, Tolerance Limits, Estimating the Variance, Estimating a Proportion for single mean, Difference between Two Means, between Two Proportions for Two Samples and Maximum Likelihood Estimation.

Statistical Hypotheses: General Concepts, Testing a Statistical Hypothesis, Tests Concerning a Single Mean, Tests on Two Means, Test on a Single Proportion, Two Samples: Tests on Two Proportions.

UNIT - V

Stochastic Processes and Markov Chains: Introduction to Stochastic processes- Markov process. Transition Probability, Transition Probability Matrix, First order and Higher order Markov process, n-step transition probabilities, Markov chain, Steady state condition, Markov analysis.

TEXT BOOKS:

- 1. Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, Probability & Statistics for Engineers & Scientists, 9th Ed. Pearson Publishers.
- 2. S C Gupta and V K Kapoor, Fundamentals of Mathematical statistics, Khanna publications.
- 3. S. D. Sharma, Operations Research, Kedarnath and Ramnath Publishers, Meerut, Delhi

- 1. T.T. Soong, Fundamentals of Probability and Statistics for Engineers, John Wiley & Sons Ltd, 2004
- 2. Sheldon M Ross, Probability and statistics for Engineers and scientists, Academic Press.

CS304PC: COMPUTER ORGANIZATION AND ARCHITECTURE

B.TECH II Year I Sem. L T P C 3 0 0 3

Co-requisite: A Course on "Digital Logic Design and Microprocessors".

Course Objectives:

- The purpose of the course is to introduce principles of computer organization and the basic architectural concepts.
- It begins with basic organization, design, and programming of a simple digital computer and introduces simple register transfer language to specify various computer operations.
- Topics include computer arithmetic, instruction set design, microprogrammed control unit, pipelining and vector processing, memory organization and I/O systems, and multiprocessors

Course Outcomes:

- Understand the basics of instructions sets and their impact on processor design.
- Demonstrate an understanding of the design of the functional units of a digital computer system.
- Evaluate cost performance and design trade-offs in designing and constructing a computer processor including memory.
- Design a pipeline for consistent execution of instructions with minimum hazards.
- Recognize and manipulate representations of numbers stored in digital computers

UNIT - I

Digital Computers: Introduction, Block diagram of Digital Computer, Definition of Computer Organization, Computer Design and Computer Architecture.

Register Transfer Language and Micro operations: Register Transfer language, Register Transfer, Bus and memory transfers, Arithmetic Micro operations, logic micro operations, shift micro operations, Arithmetic logic shift unit.

Basic Computer Organization and Design: Instruction codes, Computer Registers Computer instructions, Timing and Control, Instruction cycle, Memory Reference Instructions, Input – Output and Interrupt.

UNIT - II

Microprogrammed Control: Control memory, Address sequencing, micro program example, design of control unit.

Central Processing Unit: General Register Organization, Instruction Formats, Addressing modes, Data Transfer and Manipulation, Program Control.

UNIT - III

Data Representation: Data types, Complements, Fixed Point Representation, Floating Point Representation.

Computer Arithmetic: Addition and subtraction, multiplication Algorithms, Division Algorithms, Floating – point Arithmetic operations. Decimal Arithmetic unit, Decimal Arithmetic operations.

UNIT - IV

Input-Output Organization: Input-Output Interface, Asynchronous data transfer, Modes of Transfer, Priority Interrupt Direct memory Access.

Memory Organization: Memory Hierarchy, Main Memory, Auxiliary memory, Associate Memory, Cache Memory.

UNIT - V

Reduced Instruction Set Computer: CISC Characteristics, RISC Characteristics.

Pipeline and Vector Processing: Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction Pipeline, RISC Pipeline, Vector Processing, Array Processor.

Multi Processors: Characteristics of Multiprocessors, Interconnection Structures, Interprocessor arbitration, Interprocessor communication and synchronization, Cache Coherence.

TEXT BOOK:

1. Computer System Architecture – M. Moris Mano, Third Edition, Pearson/PHI.

- 1. Computer Organization Car Hamacher, Zvonks Vranesic, Safea Zaky, Vth Edition, McGraw Hill.
- 2. Computer Organization and Architecture William Stallings Sixth Edition, Pearson/PHI.
- 3. Structured Computer Organization Andrew S. Tanenbaum, 4th Edition, PHI/Pearson.

CS305PC: OBJECT ORIENTED PROGRAMMING USING C++

B.TECH II Year I Sem.

L T P C
2 0 0 2

Prerequisites: A course on "Programming for Problem Solving using C".

Course Objectives:

- Introduces Object Oriented Programming concepts using the C++ language.
- Introduces the principles of data abstraction, inheritance and polymorphism;
- Introduces the principles of virtual functions and polymorphism
- Introduces handling formatted I/O and unformatted I/O
- Introduces exception handling

Course Outcomes:

- Able to develop programs with reusability
- Develop programs for file handling
- Handle exceptions in programming
- Develop applications for a range of problems using object-oriented programming techniques

UNIT - I

Object-Oriented Thinking: Different paradigms for problem solving, need for OOP paradigm, differences between OOP and Procedure oriented programming, Overview of OOP concepts-Abstraction, Encapsulation, Inheritance and Polymorphism.

C++ Basics: Structure of a C++ program, Data types, Declaration of variables, Expressions, Operators, Operator Precedence, Evaluation of expressions, Type conversions, Pointers, Arrays, Pointers and Arrays, Strings, Structures, References. Flow control statement- if, switch, while, for, do, break, continue, goto statements. Functions - Scope of variables, Parameter passing, Default arguments, inline functions, Recursive functions, Pointers to functions. Dynamic memory allocation and deallocation operators-new and delete, Preprocessor directives.

UNIT - II

C++ Classes and Data Abstraction: Class definition, Class structure, Class objects, Class scope, this pointer, Friends to a class, Static class members, Constant member functions, Constructors and Destructors, Dynamic creation and destruction of objects, Data abstraction, ADT and information hiding.

UNIT - III

Inheritance: Defining a class hierarchy, Different forms of inheritance, Defining the Base and Derived classes, Access to the base class members, Base and Derived class construction, Destructors, Virtual base class.

Virtual Functions and Polymorphism: Static and Dynamic binding, virtual functions, Dynamic binding through virtual functions, Virtual function call mechanism, Pure virtual functions, Abstract classes, Implications of polymorphic use of classes, Virtual destructors.

UNIT - IV

C++ I/O: I/O using C functions, Stream classes hierarchy, Stream I/O, File streams and String streams, Overloading operators, Error handling during file operations, Formatted I/O.

UNIT - V

Exception Handling: Benefits of exception handling, Throwing an exception, The try block, Catching an exception, Exception objects, Exception specifications, Stack unwinding, Rethrowing an exception, Catching all exceptions.

TEXT BOOKS:

- 1. The Complete Reference C++, 4th Edition, Herbert Schildt, Tata McGraw Hill.
- 2. Problem solving with C++: The Object of Programming, 4th Edition, Walter Savitch, Pearson Education.

- 1. The C++ Programming Language, 3rd Edition, B. Stroutstrup, Pearson Education.
- 2. OOP in C++, 3rd Edition, T. Gaddis, J. Walters and G. Muganda, Wiley Dream Tech Press.
- 3. Object Oriented Programming in C++, 3rd Edition, R. Lafore, Galigotia Publications Pvt Ltd.

CS306ES: ANALOG AND DIGITAL ELECTRONICS LAB

B.TECH II Year I Sem.

L T P C 0 0 2 1

Course Objectives

- To introduce components such as diodes, BJTs and FETs.
- To know the applications of components.
- To give understanding of various types of amplifier circuits
- To learn basic techniques for the design of digital circuits and fundamental concepts used in the design of digital systems.
- To understand the concepts of combinational logic circuits and sequential circuits.

Course Outcomes: Upon completion of the Course, the students will be able to:

- Know the characteristics of various components.
- Understand the utilization of components.
- Design and analyze small signal amplifier circuits.
- Postulates of Boolean algebra and to minimize combinational functions
- Design and analyze combinational and sequential circuits
- Known about the logic families and realization of logic gates.

List of Experiments

- 1. Full Wave Rectifier with & without filters
- 2. Common Emitter Amplifier Characteristics
- 3. Common Base Amplifier Characteristics
- 4. Common Source amplifier Characteristics
- 5. Measurement of h-parameters of transistor in CB, CE, CC configurations
- 6. Input and Output characteristics of FET in CS configuration
- 7. Realization of Boolean Expressions using Gates
- 8. Design and realization logic gates using universal gates
- 9. generation of clock using NAND / NOR gates
- 10. Design a 4 bit Adder / Subtractor
- 11. Design and realization a Synchronous and Asynchronous counter using flip-flops
- 12. Realization of logic gates using DTL, TTL, ECL, etc.

CS307PC: DATA STRUCTURES LAB

B.TECH II Year I Sem. L T P C 0 0 3 1.5

Prerequisites: A Course on "Programming for problem solving".

Course Objectives:

- It covers various concepts of C programming language
- It introduces searching and sorting algorithms
- It provides an understanding of data structures such as stacks and queues.

Course Outcomes:

- Ability to develop C programs for computing and real-life applications using basic elements like control statements, arrays, functions, pointers and strings, and data structures like stacks, queues and linked lists.
- Ability to Implement searching and sorting algorithms

List of Experiments

- 1. Write a program that uses functions to perform the following operations on singly linked list.:
 - i) Creation ii) Insertion iii) Deletion iv) Traversal
- 2. Write a program that uses functions to perform the following operations on doubly linked list.:
 - i) Creation ii) Insertion iii) Deletion iv) Traversal
- 3. Write a program that uses functions to perform the following operations on circular linked list.:
 - i) Creation ii) Insertion iii) Deletion iv) Traversal
- 4. Write a program that implement stack (its operations) using
 - i) Arrays ii) Pointers
- 5. Write a program that implement Queue (its operations) using
 - i) Arrays ii) Pointers
- 6. Write a program that implements the following sorting methods to sort a given list of integers in ascending order
 - i) Bubble sort ii) Selection sort iii) Insertion sort
- 7. Write a program that use both recursive and non recursive functions to perform the following searching operations for a Key value in a given list of integers:
 - i) Linear search ii) Binary search
- 8. Write a program to implement the tree traversal methods.
- 9. Write a program to implement the graph traversal methods.

TEXT BOOKS:

- 1. Fundamentals of Data Structures in C, 2nd Edition, E. Horowitz, S. Sahni and Susan Anderson Freed, *Universities Press*.
- 2. Data Structures using C A. S. Tanenbaum, Y. Langsam, and M. J. Augenstein, *PHI/Pearson Education*.

REFERENCE BOOK:

1. Data Structures: A Pseudocode Approach with C, 2nd Edition, R. F. Gilberg and B. A. Forouzan, Cengage *Learning*.

CS308PC: IT WORKSHOP LAB

B.TECH II Year I Sem.

L T P C 0 0 3 1.5

Course Objectives:

The IT Workshop for engineers is a training lab course spread over 60 hours. The modules include training on PC Hardware, Internet & World Wide Web and Productivity tools including Word, Excel, Power Point and Publisher.

PC Hardware introduces the students to a personal computer and its basic peripherals, the process of assembling a personal computer, installation of system software like MS Windows, Linux and the required device drivers. In addition hardware and software level troubleshooting process, tips and tricks would be covered. The students should work on working PC to disassemble and assemble to working condition and install Windows and Linux on the same PC. Students are suggested to work similar tasks in the Laptop scenario wherever possible. Internet & World Wide Web module introduces the different ways of hooking the PC on to the internet from home and workplace and effectively usage of the internet. Usage of web browsers, email, newsgroups and discussion forums would be covered. In addition, awareness of cyber hygiene, i.e., protecting the personal computer from getting infected with the viruses, worms and other cyber attacks would be introduced. Productivity tools module would enable the students in crafting professional word documents, excel spread sheets, power point presentations and personal web sites using the Microsoft suite of office tools and LaTeX.

PC Hardware

Task 1: Identify the peripherals of a computer, components in a CPU and its functions. Draw the block diagram of the CPU along with the configuration of each peripheral and submit to your instructor.

Task 2: Every student should disassemble and assemble the PC back to working condition. Lab instructors should verify the work and follow it up with a Viva. Also students need to go through the video which shows the process of assembling a PC. A video would be given as part of the course content.

Task 3: Every student should individually install MS windows on the personal computer. Lab instructor should verify the installation and follow it up with a Viva.

Task 4: Every student should install Linux on the computer. This computer should have windows installed. The system should be configured as dual boot with both windows and Linux. Lab instructors should verify the installation and follow it up with a Viva

Task 5: Hardware Troubleshooting: Students have to be given a PC which does not boot due to improper assembly or defective peripherals. They should identify the problem and fix it to get the computer back to working condition. The work done should be verified by the instructor and followed up with a Viva.

Task 6: Software Troubleshooting: Students have to be given a malfunctioning CPU due to system software problems. They should identify the problem and fix it to get the computer back to working condition. The work done should be verified by the instructor and followed up with a Viva.

Internet & World Wide Web

Task1: **Orientation & Connectivity Boot Camp:** Students should get connected to their Local Area Network and access the Internet. In the process they configure the TCP/IP setting. Finally students

should demonstrate, to the instructor, how to access the websites and email. If there is no internet connectivity preparations need to be made by the instructors to simulate the WWW on the LAN.

- **Task 2: Web Browsers, Surfing the Web:** Students customize their web browsers with the LAN proxy settings, bookmarks, search toolbars and pop up blockers. Also, plug-ins like Macromedia Flash and JRE for applets should be configured.
- **Task 3**: **Search Engines & Netiquette:** Students should know what search engines are and how to use the search engines. A few topics would be given to the students for which they need to search on Google. This should be demonstrated to the instructors by the student.
- **Task 4: Cyber Hygiene:** Students would be exposed to the various threats on the internet and would be asked to configure their computer to be safe on the internet. They need to first install an antivirus software, configure their personal firewall and windows update on their computer. Then they need to customize their browsers to block pop ups, block active x downloads to avoid viruses and/or worms.

LaTeX and WORD

Task 1 – Word Orientation: The mentor needs to give an overview of LaTeX and Microsoft (MS) office 2007/ equivalent (FOSS) tool word: Importance of LaTeX and MS office 2007/ equivalent (FOSS) tool Word as word Processors, Details of the four tasks and features that would be covered in each, Using LaTeX and word – Accessing, overview of toolbars, saving files, Using help and resources, rulers, format painter in word.

- **Task 2: Using LaTeX and Word** to create project certificate. Features to be covered:- Formatting Fonts in word, Drop Cap in word, Applying Text effects, Using Character Spacing, Borders and Colors, Inserting Header and Footer, Using Date and Time option in both LaTeX and Word.
- **Task 3: Creating project** abstract Features to be covered:-Formatting Styles, Inserting table, Bullets and Numbering, Changing Text Direction, Cell alignment, Footnote, Hyperlink, Symbols, Spell Check, Track Changes.
- **Task 4: Creating a Newsletter**: Features to be covered:- Table of Content, Newspaper columns, Images from files and clipart, Drawing toolbar and Word Art, Formatting Images, Textboxes, Paragraphs and Mail Merge in word.

Excel

Excel Orientation: The mentor needs to tell the importance of MS office 2007/ equivalent (FOSS) tool Excel as a Spreadsheet tool, give the details of the four tasks and features that would be covered in each. Using Excel – Accessing, overview of toolbars, saving excel files, Using help and resources.

- **Task 1: Creating a Scheduler -** Features to be covered: Gridlines, Format Cells, Summation, auto fill, Formatting Text
- **Task 2 : Calculating GPA** .Features to be covered:- Cell Referencing, Formulae in excel average, std. deviation, Charts, Renaming and Inserting worksheets, Hyper linking, Count function, LOOKUP/VLOOKUP
- **Task 3: Performance Analysis** Features to be covered:- Split cells, freeze panes, group and outline, Sorting, Boolean and logical operators, Conditional formatting

LaTeX and MS/equivalent (FOSS) tool Power Point

Task 1: Students will be working on basic power point utilities and tools which help them create basic power point presentation. Topic covered during this week includes: - PPT Orientation, Slide Layouts, Inserting Text, Word Art, Formatting Text, Bullets and Numbering, Auto Shapes, Lines and Arrows in both LaTeX and PowerPoint. Students will be given model power point presentation which needs to be replicated (exactly how it's asked).

Task 2: Second week helps students in making their presentations interactive. Topic covered during this week includes: Hyperlinks, Inserting –Images, Clip Art, Audio, Video, Objects, Tables and Charts.

Task 3: Concentrating on the in and out of Microsoft power point and presentations in LaTeX. Helps them learn best practices in designing and preparing power point presentation. Topic covered during this week includes: - Master Layouts (slide, template, and notes), Types of views (basic, presentation, slide slotter, notes etc), and Inserting – Background, textures, Design Templates, Hidden slides.

- 1. Comdex Information Technology course tool kit Vikas Gupta, WILEY Dreamtech
- 2. The Complete Computer upgrade and repair book, 3rd edition Cheryl A Schmidt, WILEY Dreamtech
- 3. Introduction to Information Technology, ITL Education Solutions limited, Pearson Education.
- 4. PC Hardware A Handbook Kate J. Chase PHI (Microsoft)
- 5. LaTeX Companion Leslie Lamport, PHI/Pearson.
- 6. IT Essentials PC Hardware and Software Companion Guide Third Edition by David Anfinson and Ken Quamme. *CISCO Press, Pearson Education*.
- 7. IT Essentials PC Hardware and Software Labs and Study Guide Third Edition by Patrick Regan CISCO Press, *Pearson Education*.

CS309PC: C++ PROGRAMMING LAB

B.TECH II Year I Sem.

L T P C 0 0 2 1

Prerequisites: A course on "Programming for Problem Solving".

Course Objectives:

- Introduces object-oriented programming concepts using the C++ language.
- Introduces the principles of data abstraction, inheritance and polymorphism;
- Introduces the principles of virtual functions and polymorphism
- Introduces handling formatted I/O and unformatted I/O
- Introduces exception handling

Course Outcome:

 Ability to develop applications for a range of problems using object-oriented programming techniques

List of Experiments

- 1. Write a C++ Program to display Names, Roll No., and grades of 3 students who have appeared in the examination. Declare the class of name, Roll No. and grade. Create an array of class objects. Read and display the contents of the array.
- 2. Write a C++ program to declare Struct. Initialize and display contents of member variables.
- 3. Write a C++ program to declare a class. Declare pointer to class. Initialize and display the contents of the class member.
- 4. Given that an EMPLOYEE class contains following members: data members: Employee number, Employee name, Basic, DA, IT, Net Salary and print data members.
- 5. Write a C++ program to read the data of N employee and compute Net salary of each employee (DA=52% of Basic and Income Tax (IT) =30% of the gross salary).
- 6. Write a C++ to illustrate the concepts of console I/O operations.
- 7. Write a C++ program to use scope resolution operator. Display the various values of the same variables declared at different scope levels.
- 8. Write a C++ program to allocate memory using new operator.
- 9. Write a C++ program to create multilevel inheritance. (Hint: Classes A1, A2, A3)
- 10. Write a C++ program to create an array of pointers. Invoke functions using array objects.
- 11. Write a C++ program to use pointer for both base and derived classes and call the member function. Use Virtual keyword.