WEB TECHNOLOGIES

Course Objectives:

- To introduce PHP language for server side scripting
- To introduce XML and processing of XML Data with Java
- To introduce Server side programming with Java Servlets and JSP
- To introduce Client side scripting with Javascript and AJAX.

Course Outcomes: The Student is expected to

- gain knowledge of client side scripting, validation of forms and AJAX programming
- have understanding of server side scripting with PHP language
- have understanding of what is XML and how to parse and use XML Data with Java
- To introduce Server side programming with Java Servlets and JSP

UNIT- I

Introduction to PHP: Declaring variables, data types, arrays, strings, operators, expressions, control structures, functions, Reading data from web form controls like text boxes, radio buttons, lists etc., Handling File Uploads, Connecting to database (MySQL as reference), executing simple queries, handling results, Handling sessions and cookies

File Handling in PHP: File operations like opening, closing, reading, writing, appending, deleting etc. on text and binary files, listing directories

UNIT- II

XML: Introduction to XML, Defining XML tags, their attributes and values, Document Type Definition, XML Schemas, Document Object Model, XHTML

Parsing XML Data - DOM and SAX Parsers in java.

UNIT- III

Introduction to Servlets: Common Gateway Interface (CGI), Lifecycle of a Servlet, deploying a servlet, The Servlet API, Reading Servlet parameters, Reading Initialization parameters, Handling Http Request & Responses, Using Cookies and Sessions, connecting to a database using JDBC.

UNIT- IV

Introduction to JSP: The Anatomy of a JSP Page, JSP Processing, Declarations, Directives, Expressions, Code Snippets, implicit objects, Using Beans in JSP Pages, Using Cookies and session for session tracking, connecting to database in JSP.

UNIT- V

Client side Scripting: Introduction to Javascript: Javascript language - declaring variables, scope of variables, functions, event handlers (onclick, onsubmit etc.), Document Object Model, Form validation. Simple AJAX application.

TEXT BOOKS:

- 1. Web Technologies, Uttam K Roy, Oxford University Press
- 2. The Complete Reference PHP Steven Holzner, Tata McGraw-Hill

REFERENCES:

- 1. Web Programming, building internet applications, Chris Bates 2nd edition, Wiley Dreamtech
- 2. Java Server Pages Hans Bergsten, SPD O'Reilly

- 3. Java Script, D. Flanagan, O'Reilly, SPD.
- 4. Beginning Web Programming-Jon Duckett WROX.
- 5. Programming World Wide Web, R. W. Sebesta, Fourth Edition, Pearson.
- 6. Internet and World Wide Web How to program, Dietel and Nieto, Pearson.

Linux Programming

UNIT – I

Problem solving approaches in UNIX:

Using single commands, using compound Commands, shell scripts, C programs, building own command library of programs. **Working with the Bourne shell:** Introduction, shell responsibilities, pipes and input Redirection, output redirection, here documents, running a shell script, the shell as a programming language, shell meta characters, file name substitution, shell variables, command substitution, shell commands, the environment, quoting, test command, control structures, arithmetic in shell, shell script examples, interrupt processing, functions, debugging shell scripts.

UNIT - II

Unix Files: File Concept, File Structure, File System Layout, File types, The standard I/O (fopen, fclose, fflush, fseek, fgetc, getc, getchar, fputc, putc, putchar, fgets, gets etc.), formatted I/O, stream errors, kernel support for files, System calls, library functions, file descriptors, low level file access - usage of open, creat, read, write, close, Iseek, stat family, umask, dup, dup2, fcntl. file and directory management - chmod, chown, links(soft links & hard links - unlink, link, symlink), mkdir, rmdir, chdir, getcwd, opendir, readdir, closedir, rewinddir, seekdir, telldir functions.

Basics of Perl - Scalars and their operations, assignment statements and simple I/O, control statements, arrays, hashes, references, functions, pattern matching, file I/O, example programs.

UNIT - III

Unix Process – Process concept, Kernel support for process, process attributes, process hierarchy, process creation, waiting for a process, process termination, process control, zombie process, **system call interface for process management**-fork, vfork, exit, wait, waitpid, exec family, system. **Unix Signals** – Introduction to signals, Signal generation and handling, Kernel support for signals, Signal function, unreliable signals, reliable signals, kill, raise, alarm, pause, abort, sleep functions.

UNIT – IV

Interprocess Communication Overview: Introduction to IPC, IPC between processes on a single computer system, IPC between processes on different systems, file and record locking, other unix locking techniques, pipes, FIFOs, namespaces, introduction to three types of IPC(system-V)-message queues, semaphores and shared memory.

Message Queues-Unix system-V messages, unix kernel support for messages, unix APIs for messages, client/server example.

UNIT - V:

Semaphores-Unix system-V semaphores, unix kernel support for semaphores, unix APIs for semaphores, file locking with semaphores.

Shared Memory-Unix system-V shared memory, unix kernel support for shared memory, unix APIs for shared memory, semaphore and shared memory example.

Sockets: Berkeley sockets, socket system calls for connection oriented protocol and connectionless protocol, example-client/server programs.

TEXT BOOKS:

- 1. Unix Network Programming, W. R. Stevens, Pearson/PHI.
- 2. Unix Concepts and Applications, 4th Edition, Sumitabha Das, TMH.
- 3. Unix system programming using C++, T. Chan, PHI.

- 1. Linux System Programming, Robert Love, O'Reilly, SPD.
- 2. Unix for programmers and users, 3rd Edition, Graham Glass, King Ables, Pearson Education.
- Advanced Programming in the Unix environment, 2nd Edition, W. R. Stevens & S. A. Rago, Pearson Education.
- 4. Learning Perl, R. L. Schwartz, T. Phoenix, B.D. Foy, O'Reilly, SPD.
- 5. Unix Programming, Kumar Saurabh, 1st Edition, Wiley India Pvt Ltd.

Machine Learning (Core Elective - I)

Prerequisites:

- Students are expected to have knowledge in linear signals and systems, Fourier Transform, basic linear algebra, basic probability theory and basic programming techniques; knowledge of Digital Signal Processing is desirable.
- A course on "Computational Mathematics"
- A course on "Computer Oriented Statistical Methods"

Course Objectives:

- This course introduces fundamental concepts, theories, and algorithms for pattern recognition and machine learning.
- Topics include: Pattern Representation, Nearest Neighbour Based Classifier, Bayes Classifier, Hidden Markov Models, Decision Trees, Support Vector Machines, Clustering, and an application of hand-written digit recognition.

Course Outcomes:

- Understand the theory, benefits, inadequacies and possible applications of various machine learning and pattern recognition algorithms
- Identify and employ suitable machine learning techniques in classification, pattern recognition, clustering and decision problems.

UNIT - I

Introduction - Well-posed learning problems, designing a learning system Perspectives and issues in machine learning

Concept learning and the general to specific ordering – Introduction, A concept learning task, concept learning as search, Find-S: Finding a Maximally Specific Hypothesis, Version Spaces and the Candidate Elimination algorithm, Remarks on Version Spaces and Candidate Elimination, Inductive Bias.

Decision Tree Learning – Introduction, Decision Tree Representation, Appropriate Problems for Decision Tree Learning, The Basic Decision Tree Learning Algorithm Hypothesis Space Search in Decision Tree Learning, Inductive Bias in Decision Tree Learning, Issues in Decision Tree Learning.

UNIT - II

Artificial Neural Networks Introduction, Neural Network Representation, Appropriate Problems for Neural Network Learning, Perceptions, Multilayer Networks and the Back propagation Algorithm. Discussion on the Back Propagation Algorithm, An illustrative Example: Face Recognition

Evaluation Hypotheses – Motivation, Estimation Hypothesis Accuracy, Basics of Sampling Theory, A General Approach for Deriving Confidence Intervals, Difference in Error of Two Hypotheses, Comparing Learning Algorithms.

UNIT - III

Bayesian learning - Introduction, Bayes Theorem, Bayes Theorem and Concept Learning Maximum Likelihood and Least Squared Error Hypotheses, Maximum Likelihood Hypotheses for Predicting Probabilities, Minimum Description Length Principle, Bayes Optimal Classifier, Gibs Algorithm, Naïve Bayes Classifier, An Example: Learning to Classify Text, Bayesian Belief Networks, EM Algorithm. **Computational Learning Theory –** Introduction, Probably Learning an Approximately Correct Hypothesis, Sample Complexity for Finite Hypothesis Space, Sample Complexity for Infinite Hypothesis Spaces, The Mistake Bound Model of Learning.

Instance-Based Learning – Introduction, k-Nearest Neighbor Learning, Locally Weighted Regression, Radial Basis Functions, Case-Based Reasoning, Remarks on Lazy and Eager Learning.

UNIT - IV

Pattern Comparison Techniques, Temporal patterns, Dynamic Time Warping Methods, Clustering, Codebook Generation, Vector Quantization

Pattern Classification: Introduction to HMMS, Training and Testing of Discrete Hidden Markov Models and Continuous Hidden Markov Models, Viterbi Algorithm, Different Case Studies in Speech recognition and Image Processing

UNIT - V

Analytical Learning – Introduction, Learning with Perfect Domain Theories: PROLOG-EBG Remarks on Explanation-Based Learning, Explanation-Based Learning of Search Control Knowledge, Using Prior Knowledge to Alter the Search Objective, Using Prior Knowledge to Augment Search Operations.

Combining Inductive and Analytical Learning – Motivation, Inductive-Analytical Approaches to Learning, Using Prior Knowledge to Initialize the Hypothesis.

TEXT BOOKS:

- 1. Machine Learning Tom M. Mitchell, MGH
- 2. Fundamentals of Speech Recognition By Lawrence Rabiner and Biing Hwang Juang.

REFERENCE BOOKS:

1. Machine Learning : An Algorithmic Perspective, Stephen Marsland, Taylor & Francis

DATA WAREHOUSING AND DATAMINING (Core Elective - I)

Prerequisites:

- A course on "Database Management Systems"
- Knowledge of probability and statistics

Course Objectives:

- This course presents the techniques for preprocessing data before mining, and describes the concepts related to data warehousing, On-Line Analytical Processing (OLAP), and data generalization.
- It also presents methods for mining frequent patterns, associations, and correlations.
- It then describes methods for data classification and prediction, and data-clustering approaches.

Course Outcomes:

- Examine the types of the data to be mined and present a general classification of tasks and primitives to integrate a data mining system.
- Apply preprocessing statistical methods for any given raw data.
- Devise efficient and cost effective methods for designing and maintaining data warehouses.
- Extract interesting patterns from large amounts of data that can be used for further analysis, for example in machine learning and prediction.
- Discover the role played by data mining in various fields.
- Choose and employ suitable data mining algorithms to build analytical applications
- Evaluate the accuracy of supervised and unsupervised models and algorithms.

UNIT- I

DATA MINING

Data-Types of Data-, Data Mining Functionalities- Interestingness Patterns-Classification of Data Mining systems- Data mining Task primitives -Integration of Data mining system with a Data warehouse-Major issues in Data Mining-Data Preprocessing.

UNIT - II

DATA WAREHOUSE AND BUSINESS ANALYSIS

Data Warehouse-Data Warehouse Architecture- Multidimensional Data Model-Data cube and OLAP Technology-Data Warehouse Implementation -DBMS schemas for Decision support - Efficient methods for Data cube computation.

UNIT- III

ASSOCIATION RULE MINING AND CLASSIFICATION

Mining Frequent Patterns-Associations and correlations- Mining Methods- Mining Various kinds of Association Rules- Correlation Analysis- Constraint based Association mining.-Classification and Prediction- Basic concepts-Decision tree induction-Bayesian classification, Rule-based classification - classification by Back propagation,-Support vector machines-.Associative Classification, Lazy learners-Other classification methods – Prediction.

UNIT- IV

CLUSTERING AND APPLICATIONS

Cluster analysis-Types of Data in Cluster Analysis-Categorization of Major Clustering Methods-Partitioning Methods,-Hierarchical Methods- Density-Based Methods,-Grid-Based Methods,-ModelBased Clustering Methods- Clustering high dimensional data-Constraint- Based cluster analysis-Outlier Analysis

UNIT - V

MINING DATA STREAMS, TIME-SERIES AND SEQUENCE DATA

Basic concepts- Mining data streams-Mining Time-series data--Mining sequence patterns in Transactional databases-.Mining Object- Spatial- Multimedia-Text and Web data- Spatial Data mining- Multimedia Data mining--Text Mining- Mining the World Wide Web.

TEXT BOOKS:

- 1. Data Mining Concepts and Techniques JIAWEI HAN & MICHELINE KAMBER, Elsevier.
- 2. Data Warehousing, Data Mining &OLAP- Alex Berson and Stephen J. Smith- Tata McGraw-Hill Edition, Tenth reprint 2007

REFERENCES:

- 1. Building the Data Warehouse- W. H. Inmon, Wiley Dreamtech India Pvt. Ltd.
- 2. Data Mining Introductory and Advanced topics –MARGARET H DUNHAM, PEA.

INFORMATION SECURITY (Core Elective – I)

Prerequisites

• A Course on "Computer Networks, Mathematics

Course Objectives

- Understand information security's importance in our increasingly computer-driven world..
- Master the key concepts of information security and how they "work."
- To understand the fundamentals of Cryptography
- To understand the various key distribution and management schemes
- To understand how to deploy encryption techniques to secure data in transit across data networks
- To apply algorithms used for secure transactions in real world applications

Course Outcomes

- Ability to demonstrate the knowledge of cryptography and network security concepts and applications.
- Apply security principles in system design.
- Ability to identify and investigate vulnerabilities and security threats and mechanisms to counter them.

UNIT - I

Security Attacks (Interruption, Interception, Modification and Fabrication), Security Services (Confidentiality, Authentication, Integrity, Non-repudiation, access Control and Availability) and Mechanisms, A model for Internetwork security.

Classical Encryption Techniques, DES, Strength of DES, Differential and Linear Cryptanalysis, Block Cipher Design Principles and Modes of operation, Blowfish, Placement of Encryption Function, Traffic Confidentiality, key Distribution, Random Number Generation.

UNIT - II

Public key Cryptography Principles, RSA algorithm, Key Management, Diffie-Hellman Key Exchange, Elliptic Curve Cryptography.

Message authentication and Hash Functions, Authentication Requirements and Functions, Message Authentication, Hash Functions and MACs Hash and MAC Algorithms SHA-512, HMAC.

UNIT - III

Digital Signatures, Authentication Protocols, Digital signature Standard, Authentication Applications, Kerberos, X.509 Directory Authentication Service.

Email Security: Pretty Good Privacy (PGP) and S/MIME.

UNIT - IV

IP Security:

Overview, IP Security Architecture, Authentication Header, Encapsulating Security Payload, Combining Security Associations and Key Management.

Web Security: Web Security Requirements, Secure Socket Layer (SSL) and Transport Layer Security (TLS), Secure Electronic Transaction (SET).

UNIT V

Intruders, Viruses and Worms Intruders, Viruses and related threats Firewalls: Firewall Design Principles, Trusted Systems, Intrusion Detection Systems.

TEXT BOOKS:

1. Cryptography and Network Security (principles and approaches) by William Stallings Pearson Education, 4th Edition.

- 1. Network Security Essentials (Applications and Standards) by William Stallings Pearson Education.
- 2. Principles of Information Security, Whitman, Thomson.

DISTRIBUTED SYSTEMS (CORE ELECTIVE - II)

Prerequisites:

• A course on " Operating Systems"

Course Objectives:

- This course provides an insight into Distributed systems.
- Topics include- Peer to Peer Systems, Transactions and Concurrency control, Security and Distributed shared memory

Course Outcomes:

- Ability to understand Transactions and Concurrency control.
- Ability to understand Security issues.
- Understanding Distributed shared memory.

UNIT - I

Characterization of Distributed Systems-Introduction, Examples of Distributed systems, Resource sharing and web, challenges, System models-Introduction, Architectural and Fundamental models, Networking and Internetworking, Interprocess Communication,

Distributed objects and Remote Invocation-Introduction, Communication between distributed objects, RPC, Events and notifications, Case study-Java RMI.

UNIT - II

Operating System Support- Introduction, OS layer, Protection, Processes and Threads, Communication and Invocation, Operating system architecture, Distributed File Systems-Introduction, File Service architecture, case study- SUN network file systems.

Name Services-Introduction; Name Services and the Domain Name System, Case study of the Global Name Service, Case study of the X.500 Directory Service.

UNIT - III

Peer to Peer Systems–Introduction, Napster and its legacy, Peer to Peer middleware, Routing overlays, Overlay case studies-Pastry, Tapestry, Application case studies-Squirrel, OceanStore.

Time and Global States-Introduction, Clocks, events and Process states, Synchronizing physical clocks, logical time and logical clocks, global states, distributed debugging.

Coordination and Agreement-Introduction, Distributed mutual exclusion, Elections, Multicast communication, consensus and related problems.

UNIT - IV

Transactions and Concurrency control-Introduction, Transactions, Nested Transactions, Locks, Optimistic concurrency control, Timestamp ordering, Comparison of methods for concurrency control. Distributed Transactions-Introduction, Flat and Nested Distributed Transactions, Atomic commit protocols, Concurrency control in distributed transactions, Distributed deadlocks, Transaction recovery, Replication-Introduction, System model and group communication, Fault tolerant services, Transactions with replicated data.

UNIT - V

Security-Introduction, Overview of Security techniques, Cryptographic algorithms, Digital signatures, Case studies-Kerberos, TLS, 802.11 WiFi.

Distributed shared memory, Design and Implementation issues, Sequential consistency and Ivy case study, Release consistency and Munin case study, Other consistency models, CORBA case study-Introduction, CORBA RMI, CORBA Services.

TEXT BOOKS:

- 1. Distributed Systems Concepts and Design, G Coulouris, J Dollimore and T Kindberg, Fourth Edition, Pearson Education.
- 2. Distributed Systems, S. Ghosh, Chapman & Hall/CRC, Taylor & Francis Group, 2010.

- 1. Distributed Computing, S. Mahajan and S. Shah, Oxford University Press.
- 2. Distributed Operating Systems Concepts and Design, Pradeep K.Sinha, PHI.
- 3. Advanced Concepts in Operating Systems, M Singhal, N G Shivarathri, TMH.
- 4. Reliable Distributed Systems, K. P. Birman, Springer.
- 5. Distributed Systems Principles and Paradigms, A.S. Tanenbaum and M.V. Steen, Pearson Education.
- 6. Distributed Operating Systems and Algorithm Analysis, R. Chow, T. Johnson, Pearson.
- 7. Distributed Operating Systems, A. S. Tanenbaum, Pearson education.
- 8. Distributed Computing, Principles, Algorithms and Systems, Ajay D. Kshemakalyani and Mukesh Singhal, Cambridge, rp 2010.

SOFTWARE PROCESS AND PROJECT MANAGEMENT (CORE ELECTIVE - II)

Course Objectives: At the end of the course, the student shall be able to:

- To describe and determine the purpose and importance of project management from the perspectives of planning, tracking and completion of project.
- To compare and differentiate organization structures and project structures.
- To implement a project to manage project schedule, expenses and resources with the application of suitable project management tools.

UNIT - I

Software Process Maturity: Software maturity Framework, Principles of Software Process Change, Software Process Assessment, The Initial Process, The Repeatable Process, The Defined Process, The Managed Process, The Optimizing Process. **Process Reference Models Capability** Maturity Model (CMM), CMMi, PCMM, PSP, TSP.

UNIT - II

Software Project Management Renaissance Conventional Software Management, Evolution of Software Economics, Improving Software Economics, The old way and the new way. **Life-Cycle Phases and Process artifacts** Engineering and Production stages, inception phase, elaboration phase, construction phase, transition phase, artifact sets, management artifacts, engineering artifacts and pragmatic artifacts, model based software architectures.

UNIT - III

Workflows and Checkpoints of process Software process workflows, Iteration workflows, Major milestones, Minor milestones, Periodic status assessments. **Process Planning** Work breakdown structures, Planning guidelines, cost and schedule estimating process, iteration planning process, Pragmatic planning.

UNIT - IV

Project Organizations Line-of- business organizations, project organizations, evolution of organizations, process automation. **Project Control and process instrumentation** The seven core metrics, management indicators, quality indicators, life-cycle expectations, Pragmatic software metrics, metrics automation.

UNIT V

CCPDS-R Case Study and Future Software Project Management Practices Modern Project Profiles, Next-Generation software Economics, Modern Process Transitions.

TEXT BOOKS:

- 1. Managing the Software Process, *Watts S. Humphrey*, Pearson Education.
- 2. Software Project Management, Walker Royce, Pearson Education.

- 1. Effective Project Management: Traditional, Agile, Extreme, Robert Wysocki, Sixth edition, Wiley India, rp2011.
- 2. An Introduction to the Team Software Process, Watts S. Humphrey, Pearson Education, 2000
- 3. Software Project Management, Bob Hughes & Mike Cotterell, fourth edition, TMH, 2006
- 4. Applied Software Project Management, Andrew Stellman & Jennifer Greene, O'Reilly, 2006.
- 5. Head First PMP, Jennifer Greene & Andrew Stellman, O'Reilly, 2007

- 6. Software Engineering Project Managent, Richard H. Thayer & Edward Yourdon, 2nd edition, Wiley India, 2004.
- 7. The Art of Project Management, Scott Berkun, SPD, O'Reilly, 2011.
- 8. Applied Software Project Management, Andrew Stellman & Jennifer Greene, SPD, O'Reilly, rp2011.
- 9. Agile Project Management, Jim Highsmith, Pearson education, 2004.
- 10. Process Improvement essentials, James R. Persse, O'Reilly, 2006

SOFT COMPUTING (CORE ELECTIVE - II)

Course Objectives

- This course explains AI Problems and Search techniques.
- To understand Supervised and Unsupervised Learning Networks
- Introduces Classical Sets and Fuzzy Sets.
- To understand Genetic Algorithms.

Course Outcomes

- Comprehend the differences between Classical Sets and Fuzzy Sets
- Get the skill for application of search techniques to solve AI Problems
- Able to apply Genetic Algorithms for solving real time problems

UNIT- I

Al Problems and Search: Al problems, Techniques, Problem Spaces and Search, Heuristic Search Techniques- Generate and Test, Hill Climbing, Best First Search Problem reduction, Constraint Satisfaction and Means End Analysis. Approaches to Knowledge Representation- Using Predicate Logic and Rules.

UNIT- II

Supervised Learning Networks-perceptron, Back propagation algorithm-Classification Problem-Speech Processing Case study.

Unsupervised Learning Network- Introduction, Fixed Weight Competitive Nets, Maxnet, Hamming Network, Kohonen Self-Organizing Feature Maps, Learning Vector Quantization,

UNIT - III

Introduction to Classical Sets (crisp Sets)and Fuzzy Sets- operations and Fuzzy sets. Classical Relations –and Fuzzy Relations- Cardinality, Operations, Properties and composition. Tolerance and equivalence relations.

Membership functions- Features, Fuzzification, membership value assignments, Defuzzification.

UNIT - IV

Fuzzy Arithmetic and Fuzzy Measures, Fuzzy Rule Base and Approximate Reasoning Fuzzy Decision making

Fuzzy Logic Control Systems. Genetic Algorithm- Introduction and basic operators and terminology. Applications: Optimization of TSP, Internet Search Technique

UNIT - V

Genetic Algorithms-Introduction, Biological background, Search space, Basic technologies, Simple and general genetic algorithms, Operations in genetic algorithms, Stopping criteria and constraints in genetic algorithms, Problem solving using genetic algorithms.

TEXT BOOKS:

- 1. Principles of Soft Computing- S N Sivanandam, S N Deepa, Wiley India, 2007
- 2. Soft Computing and Intelligent System Design –Fakhreddine O Karray, Clarence D Silva,. Pearson Edition, 2004.

- 1. Artificial Intelligence and Soft Computing- Behavioural and Cognitive Modelling of the Human Brain- Amit Konar, CRC press, Taylor and Francis Group.
- 2. Artificial Intelligence Elaine Rich and Kevin Knight, TMH, 1991, rp2008.
- 3. Artificial Intelligence Patric Henry Winston Third Edition, Pearson Education.
- 4. A first course in Fuzzy Logic-Hung T Nguyen and Elbert A Walker, CRC. Press Taylor and Francis Group.

WEB TECHNOLOGIES LAB

- 1. Develop static pages (using Only HTML) of an online Book store. The pages should resemble: www.amazon.com The website should consist the following pages.
- 2. Home page
- 3. Registration and user Login
- 4. User Profile Page
- 5. Books catalog
- 6. Shopping Cart
- 7. Payment By credit card
- 8. Order Conformation
- 2. Validate the Registration, user login, user profile and payment by credit card pages using JavaScript.
- 3. Create and save an XML document at the server, which contains 10 users information. Write a program, which takes User Id as an input and returns the user details by taking the user information from the XML document.
- 4. Bean Assignments
 - a. Create a JavaBean which gives the exchange value of INR(Indian Rupees) into equivalent American/Canadian/Australian Dollar value.
 - b. Create a simple Bean with a label which is the *count* of number of clicks. Than create a BeanInfo class such that only the "*count*" property is visible in the Property Window.
 - c. Create two Beans-a)KeyPad .b)DisplayPad .After that integrate the two Beans to make it work as a Calculator.
 - d. Create two Beans Traffic Light(Implemented as a Label with only three background colours-Red,Green,Yellow) and Automobile(Implemented as a TextBox which states its state/movement). The state of the Automobile should depend on the following Light Transition Table.

Light Transition	Automobile State
Red -→ Yellow	Ready
Yellow -→ Green	Move
Green → Red	Stopped

- 5. Install TOMCAT web server. Convert the static web pages of assignments 2 into dynamic web pages using servlets and cookies. Hint: Users information (user id, password, credit card number) would be stored in web.xml. Each user should have a separate Shopping Cart.
- Redo the previous task using JSP by converting the static web pages of assignments 2 into dynamic web pages. Create a database with user information and books information. The books catalogue should be dynamically loaded from the database. Follow the MVC architecture while doing the website.

LINUX PROGRAMMING LAB

Linux Programming: Note: Use Bash for Shell scripts.

- 1. Write a shell script that accepts a file name, starting and ending line numbers as arguments and displays all the lines between the given line numbers.
- 2. Write a shell script that deletes all lines containing a specified word in one or more files supplied as arguments to it.
- 3. Write a shell script that displays a list of all the files in the current directory to which the user has read, write and execute permissions.
- 4. Write a shell script that receives any number of file names as arguments checks if every argument supplied is a file or a directory and reports accordingly. Whenever the argument is a file, the number of lines on it is also reported.
- 5. Write a shell script that accepts a list of file names as its arguments, counts and reports the occurrence of each word that is present in the first argument file on other argument files.
- 6. Write a shell script to list all of the directory files in a directory.
- 7. Write a shell script to find factorial of a given integer.
- 8. Write an awk script to count the number of lines in a file that do not contain vowels.
- 9. Write an awk script to find the number of characters, words and lines in a file.
- 10. Write a C program that makes a copy of a file using standard I/O and system calls.
- 11. Implement in C the following Unix commands using System callsa). Catb) mv
- 12. Write a C program to list files in a directory.
- 13. Write a C program to emulate the Unix Is –I command.
- 14. Write a C program to list for every file in a directory, its inode number and file name.
- 15. Write a C program that redirects standard output to a file.Ex: ls > f1.
- 16. Write a C program to create a child process and allow the parent to display "parent" and the child to display "child" on the screen.
- 17. Write a C program to create a Zombie process.
- 18. Write a C program that illustrates how an orphan is created.
- 19. Write a C program that illustrates how to execute two commands concurrently with a command pipe. Ex :- Is -I | sort
- 20. Write C programs that illustrate communication between two unrelated processes using named pipe.
- 21. Write a C program in which a parent writes a message to a pipe and the child reads the message.
- 22. Write a C program (sender.c) to create a message queue with read and write permissions to write 3 messages to it with different priority numbers.

- 23. Write a C program (receiver.c) that receives the messages (from the above message queue as specified in (22)) and displays them.
- 24. Write a C programs to transfer a large amount of data between processes, using a) a pipe b)a FIFO c)a message queue.
- 25. Write a C program to allow cooperating processes to lock a resource for exclusive use, using: a)Semaphores b)flock or lockf system calls.
- 26. Write a C program that illustrates suspending and resuming processes using signals.
- 27. Write a C program that implements a producer-consumer system with two processes. (using Semaphores).
- 28. Write client and server programs (using c) for interaction between server and client processes using Unix Domain sockets.
- 29. Write client and server programs (using c) for interaction between server and client processes using Internet Domain sockets.
- 30. Write C programs that illustrate two processes communicating using shared memory.

TEXT BOOKS:

- 1. Advanced Unix Programming, N. B. Venkateswarulu, BS Publications.
- 2. Unix and Shell programming, B. A. Forouzan and R. F. Gilberg, Cengage Learning.
- 3. Unix and Shell Programming, M.G. Venkatesh Murthy, Pearson Education, 2005.
- 4. Unix Shells by Example, 4th Edition, Ellie Quigley, Pearson Education.
- 5. Sed and Awk, O. Dougherty & A. Robbins, 2nd edition, SPD.