

Jawaharlal Nehru Technological University Anantapur

(Established by Govt. of A.P., Act. No. 30 of 2008) Ananthapuramu–515 002 (A.P) India

III & IV Year B.Tech

Course Structures and Syllabi under R19 Regulations

JNTUA Curriculum Electronics and Communication Engineering B. Tech Course Structure

Semester - 5 (Theory - 6, Lab - 3)						
S.No	Course No	Course Name	Category	L-T-P	Credits	
1.	19A04501T	Integrated Circuits and Applications	PC	2-0-0	2	
2.	19A04502	Antennas and Wave Propagation	PC	3-0-0	3	
3.	19A52601T	English Language Skills	HS	3-0-0	3	
4.	19A04503T	Digital Communications	PC	3-0-0	3	
		Professional Elective-I	PC	3-0-0	3	
5.	19A05403T	Operating Systems				
	19A02403	Power Electronics				
	19A05303T	Object Oriented Programming				
	19A04504a	Data Communications and Networks				
	19A04504b	Nano Electronics				
		Open Elective-I	OE	3-0-0	3	
6.	19A01506a	Experimental stress analysis.				
	19A01506b	Building Technology				
	19A02506a	Electrical Engineering Materials				
	19A03506a	Introduction to Hybrid and Electric				
	17/1055000	Vehicles				
	19A03506b	Rapid Prototyping				
		Analog Electronics				
	19A04506a	Digital Electronics				
	19A04506b 19A05506a	0				
	19A05506a 19A05506b	Free and Open Sources Systems				
	17A055000	Computer Graphics and Multimedia Animation				
	19A27506a	Brewing Technology				
	19A27506b	Computer Applications in Food				
	1711275000					
		Technology				
	19A54506a	Optimization Techniques				
	19A52506a	Technical Communication and				
		Presentation Skills				
7.	19A04501P	Integrated Circuits and Applications	PC	0-0-3	1.5	
		Lab				
8.	19A52601P	English Language Skills Lab	HS	0-0-3	1.5	
9.	19A04503P	Digital Communications Lab	PC	0-0-2	1	
10.	19A04507	Socially Relevant Project		0-0-1	0.5	
11.	19A99601	Research Methodology		3-0-0	0	
		(Mandatory course)			A 4 F	
				Total	21.5	

III & IV Year Course Structure and Syllabus

S.No	Course No	Course Name	Cat egor y	L-T-P	Credits
1.	19A04601T	Microprocessors and Microcontrollers	PC	3-0-0	3
2.	19A04602T	Digital Signal Processing	PC	3-0-0	3
3.	19A04603	Digital System Design through VHDL	PC	3-0-0	3
4.		Professional Elective-II	PC	3-0-0	3
	19A04605a	Cellular & Mobile Communications			
	19A04605b	Sensors and Actuators			
	19A04605c	Digital Switching and Multiplexing			
	19A04605d	Electronic Measurements and			
		Instrumentation			
	19A04605e	Radar Systems			
5.		Open Elective-II	OE	3-0-0	3
	19A01604a	Industrial waste and waste water			
		management.			
	19A01604b	Building Services & Maintenance			
	19A02604a	Industrial Automation			
	19A02604b	System Reliability Concepts			
	19A03604a	Introduction to Mechatronics			
	19A03604b	Optimization techniques through MATLAB			
	19A04604a	Basics of VLSI			
	19A04604b	Principles of Communication Systems			
	19A05604a	Fundamentals of VR/AR/MR			
	19A05604b	Data Science			
	19A27604a	Food Toxicology			
	19A27604b	Food Plant Equipment Design			
	19A54604a	Wavelet Transforms & its applications			
	19A52604a	Soft Skills			
6.		Humanities Elective-I	HS	3-0-0	3
	19A52602a	Entrepreneurship & Incubation			
	19A52602b	Managerial Economics And Financial			
		Analysis			
	19A52602c	Business Ethics And Corporate Governance			
	19A52602d	Enterprise Resource Planning			
7	19A52602e	Supply Chain Management	DC	0.0.2	1 5
7.	19A04602P	Digital Signal Processing Lab	PC	0-0-3	1.5
8.	19A04601P	Microprocessors and Microcontrollers Lab	PC	0-0-3	1.5
<u>9.</u>	19A04606	Socially Relevant Project		0-0-1	0.5
10.	19A99501	Constitution of India (Mandatory Course)		3-0-0	0
11.	19A04607	Industrial Training/Skill	PR		
		Development/Research Project*		Total	21.5

Semester – 7 (Theory - 5, Labs -2 & Project – 1)S.NoCourse NoCourse NameCateL-T-Credi						
0.110	Course no		gory	P	ts	
1.	19A04701T	Microwave Engineering and Optical Communications	PC	3-0-0	3	
2.	19A04702T	VLSI Design	PC	3-0-0	3	
		Professional Elective-III	PEC	3-0-0	3	
3.	19A04703a	Satellite Communications	-III		U	
	19A04703b	Digital TV Engineering				
	19A04703c	Embedded Systems				
	19A04703d	Image Processing				
	19A04703e	Advanced Digital Signal Processing				
		Open Elective-III	OEC	3-0-0	3	
4.	19A01704a	Air pollution and control.	-III			
	19A01704a	Basics of civil Engineering				
	19A02704a	Renewable Energy Systems				
	19A02704b	Electric Vehicle Engineering				
	19A03704a	Finite element methods				
	19A03704b	Product Marketing				
	19A04704a	Introduction to Microcontrollers & Applications				
	19A04704b	Principles of Digital Signal Processing				
	19A05704a	Fundamentals of Game Development				
	19A05704b	Cyber Security				
	19A27704a	Corporate Governance in Food Industries				
	19A27704b	Process Technology for Convenience & RTE Foods				
	19A54704a	Numerical Methods for Engineers (ECE, CSE, IT				
		&CE)				
		Humanities Elective-II	HS	3-0-0	3	
5.	19A52701a	Organizational Behavior	MC			
	19A52701b	Management Science				
	19A52701c	Business Environment				
	19A52701d	Strategic Management				
	19A52701e	E-Business				
6.	19A04701P	Microwave and Optical Communications Lab	PC	0-0-3	1.5	
7.	19A04702P	VLSI Design Lab	PC	0-0-3	1.5	
8.	19A04705	Project	PR	0-0-4	2	
9.	19A04706	Industrial Training/Skill Development/Research Project	PR		1.5	
	1		1	Total	21.5	

		Semester – 8 (Theory - 2, Pro	ject – 1)		
S.No	Course No	Course Name	Category	L-T-P	Credits
1.	19A04801a	Professional Elective-IV Advanced 3G and 4G Wireless	PE	3-0-0	3
	19A04801b 19A04801c	Mobile Communications Introduction to Internet of Things Fuzzy sets, logic and systems and			
	19A04801d 19A04801e	Applications Biomedical Signal Processing Analog IC design			
2.	19A01802a 19A01802b 19A02802a 19A02802b 19A03802a 19A03802b 19A04802a 19A04802b 19A04802c 19A04802c 19A04802d 19A05802a	Open Elective-IV Disaster Management. Global Warming and climate changes IoT Applications in Electrical Engineering Smart Electric Grid Energy conservation and management Non destructive testing Introduction to Image Processing Principles of Cellular and Mobile Communications Industrial Electronics Electronic Instrumentation Block Chain Technology and Applications	OE	3-0-0	3
	19A05802b 19A27802a 19A27802b 19A54802a	MEAN Stack Technology Food Plants Utilities & Services Nutraceuticals & Functional Foods Mathematical Modeling & Simulation			
3.	19A04803	Project	PR		7
				Total	13

Open Electives (IDE) required for ECE from other disciplines: Suggested by BOS

Civil Engineering

- 1. Remote Sensing & GIS
- 2. Disaster Management

Mechanical Engineering

- 1. Mechatronics
- 2. Robotics

Electrical & Electronics Engineering

- 1. Renewable Energy Sources
- 2. Optimization Techniques

Computer Science Engineering

- 1. Operating Systems
- 2. Database Management Systems
- 3. Software Testing Methodologies
- 4. Scripting Languages
- 5. Artificial Intelligence
- 6. Cyber Security
- 7. Big data Analytics
- 8. Cloud Computing
- 9. Web Design and Management
- 10. Mobile Application Development

Electives from Humanities required for ECE: Suggested by BOS

- 1. Managerial Economics & Financial Accounting
- 2. Management Science
- 3. Entrepreneurship & Incubation
- 4. Organizational Behaviour
- 5. Intellectual Property Rights
- 6. Effective Business Communications
- 7. Total Quality Management
- 8. Personal Management (HR Management)
- 9. Management Information systems
- 10. Enterprise resource planning
- 11. Statistical Analysis (Data analysis)

B.Tech. (Honors)

6 Page

Additional Courses offered by ECE department for B.Tech. (Honors)

- 1. 5G Wireless Communications
- 2. Automotive Electronics
- 3. Low power VLSI Design.
- 4. Pattern Recognition
- 5. Smart Antennas
- 6. Digital Video Signal Processing (MOOCs)
- 7. MEMS & Nano Technology

Minor degree courses offered by ECE for Non-Circuit Branches

- 1. Analog Electronics
- 2. Digital Electronics
- 3. Communication Engineering
- 4. Microprocessors and Microcontrollers
- 5. Signal Processing
- 6. Signal Processing and Communication Lab
- 7. Electronics Lab
- 8. Mini Project.

Minor degree courses offered by ECE for Circuit Branches

- 1. Probability Theory and Stochastic Processes
- 2. Principles of Communications
- 3. Principles of Antennas
- 4. Wireless Mobile Communications
- 5. Radar and Satellite Communication
- 6. Communication Lab
- 7. Simulation Lab
- 8. Mini Project.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-I Sem L T P C 2 0 0 2

(19A04501T) INTEGRATED CIRCUITS AND APPLICATIONS

Course Objectives:

- To introduce basic building blocks of Op-Amps & specialized ICs.
- To explain DC and AC performance characteristics of Op-Amps.
- To impart knowledge on linear and non-linear applications of Op-Amps.
- To describe operation & characteristics of data converters.
- To design various circuits using Op-Amps and 555 timer.
- To familiarise specialised ICs such as VCO, PLL, voltage regulators.

UNIT- I

Operational Amplifier: Introduction, Block diagram, Characteristics and Equivalent circuits of an ideal op-amp, Various types of Operational Amplifiers and their applications, Power supply configurations for OP-AMP applications, Inverting and non-inverting amplifier configurations. The Practical op-amp: Introduction, Input offset voltage, Offset current, Thermal drift, Effect of variation in power supply voltage, common-mode rejection ratio, Slew rate and its Effect, PSRR and Gain – bandwidth product, frequency limitations and compensations, transient response.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand different Offsets present in Op amp & nullification circuits. (L1)
- Examine performance of Op-Amp in open loop and closed configurations. (L2)
- Analyse emitter-coupled differential amplifier. (L3)
- Compare ideal and practical Op-Amps. (L5)

UNIT- II

Applications of Operational Amplifier: Amplifiers: Adder, Integrator, Differentiator, Difference amplifier and Instrumentation amplifier, Converters: Current to voltage and voltage to current converters, Active Filters: First order filters, second order active finite and infinite gain low pass, high pass, band pass and band reject filters, Sine Wave Oscillators: RC phase shift oscillator, Wien bridge oscillator.

Learning Outcomes:

At the end of this unit, the student will be able to

- Describe operation of Op-Amp based Linear application circuits, converters, amplifiers and non-linear circuits. (L2)
- Examine different types of oscillators & active filters with detailed mathematical analysis and illustrations. (L3)
- Design circuits such as amplifiers, comparator, differentiators and integrators using operational amplifiers for various applications, Design active filters and oscillators using Op amp for given specifications. (L4)

UNIT- III

Non-Linear Applications of Operational Amplifier: Comparators: Inverting comparator, noninverting comparator, zero crossing detector, window detector and level detector, Schmitt Triggers: Inverting Schmitt trigger, non-inverting Schmitt trigger with adjustable threshold levels.

Waveform Generators: Square wave and triangular wave generator with duty cycle modulation, Precision Rectifiers: Half and full wave precision, rectifiers, log and antilog amplifiers, voltage to frequency converter, frequency to voltage converter.

Learning Outcomes:

At the end of this unit, the student will be able to

- Describe operation of Op-Amp based comparators, converters, detectors, rectifiers, sample & hold circuits and waveform generators. (L2)
- Analyse Op-Amp based Comparators, converters, detectors, rectifiers, sample & hold circuits and waveform generators. (L3)
- Design Wave form generators, voltage to frequency converters & frequency to voltage converters for given specification. (L4)

UNIT- IV

Data Converters: Introduction, Basic DAC techniques, Different types of DACs-Weighted resistor DAC, R-2R ladder DAC, Inverted R-2R DAC, Different Types of ADCs - Parallel Comparator Type ADC, Counter Type ADC, Successive Approximation ADC. Dual Slope ADC, DAC and ADC Specifications.

Learning Outcomes:

At the end of this unit, the student will be able to

• Explain operation principles of different A/D & D/A converters. (L2)

- Compare different types of A/D & D/A converter circuits. (L5)
- Inspect ADC & DAC specifications to select the right converter for an application. (L4)

UNIT -V

Special Purpose Integrated Circuits: Functional block diagram, working, design and applications of Timer 555 (Monostable & Astable), Functional block diagram, working and applications of VCO 566, PLL 565, Fixed and variable Voltage regulators.

Learning Outcomes:

At the end of this unit, the student will be able to

- Describe internal circuit operation of 555 timer, IC voltage regulators (L2)
- Describe functionality of special purpose ICs such as VCO, PLL. (L2)
- Design multi-vibrator circuits using timer. (L4)

Course Outcomes:

- Understand DC and AC characteristics of operational amplifiers & Op amp parameters and functionality of specialized ICs such as 555 TIMER, VCO, PLL & Voltage regulators.
- Make use of Op-Amps and specialized ICs to design circuits for various applications.
- Analyze Op-Amp based Comparators, Waveform generators, Active filters, Converters.
- Design of Op amp based Comparators, Waveform Generators, Active filters, Converters, design various multi-vibrator circuits using IC 555 timer
- Compare different types of A/D and D/A Converter circuits.

TEXTBOOKS:

- 1. Ramakanth A. Gayakwad, "Op-Amps & Linear ICs", 4thEdition, Pearson, 2017.
- D. Roy Choudhury, "Linear Integrated Circuits", 2nd Edition, New Age International (p) Ltd, 2003.

REFERENCES:

- 1. Sergio Franco, "Design with Operational Amplifiers &Analog Integrated Circuits", 3rd edition, McGraw Hill, 1988.
- 2. Jacob Millman, Christos C. Halkias, "Integrated Electronics Analog and Digital circuits system", Tata McGraw Hill, 2003.
- 3. Gray and Meyer, "Analysis and Design of Analog Integrated Circuits", 5th edition Wiley International, 2009.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-I Sem L T P C 3 0 0 3

(19A04502) ANTENNAS AND WAVE PROPAGATION

Course Objectives:

- To introduce radiation mechanisms and basic characteristics of antennas.
- To derive mathematical expressions and their application for complete design of antennas.
- To demonstrate various modes of EM wave propagation.
- To explain measurement of antenna parameters
- To introduce design concepts of various types of antennas including micro strip antenna.

UNIT- I

Antenna Characteristics: Radiation mechanism and current distribution, radiation pattern, directivity, gain, Input impedance, polarization, bandwidth, HPBW. Reciprocity, equivalence of radiation and receive patterns, equivalence of impedances, effective aperture, vector effective length, antenna temperature, Friis transmission formula, problem solving.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand radiation mechanism and basic antenna characteristics. (L1)
- Compute radiation intensity, gain and directivity of antennas. (L2)

UNIT- II

Wire and Antenna Arrays: Wire and antenna arrays: Radiation resistance and directivity and other characteristics of short dipole, monopole, half-wave dipole, small loop antenna.

Linear array and pattern multiplication, two-element array, uniform array, binomial array, broadside and end-fire arrays.

Rhombic antennas, Yagi-Uda array, Turnstile Antenna, Helical antenna - axial and normal modes, log-periodic Array, spiral antenna.

Learning Outcomes:

At the end of this unit, the student will be able to

- Derive expressions for radiation resistance, directivity of wire antennas. (L3)
- Obtain radiation pattern of various array antennas using pattern multiplication. (L3)
- Compare radiation pattern and other antenna parameters of broadside and endfire array antennas. (L5)
- To know the design aspects of antenna arrays. (L4)

UNIT- III

Aperture Antennas and Lens Antennas: Aperture Antennas and Lens Antennas: Slot antenna, pyramidal and conical horn antennas, reflector Antenna: flat plate, corner and parabolic reflectors - common curved reflector shapes, Feed mechanisms.

Lens Antennas - Introduction, Geometry of Non-metallic Dielectric Lenses, Zoning, Tolerances, Applications.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand basic principles of aperture and lens antennas. (L1)
- Design aperture and lens antennas. (L4)

UNIT- IV

Micro-Strip Antennas And Antenna Measurements: Micro-strip Antennas and Antenna Measurements: Basic characteristics, feeding methods, methods of analysis - Design of Rectangular and Circular Patch Antennas, Introduction to Smart Antennas - Concept of adaptive beam forming, Measurement of Antenna Parameters, basic setup, radiation pattern measurement, gain, directivity.

Learning Outcomes:

At the end of this unit, the student will be able to

- Describe feeding methods for micro-strip antennas. (L2)
- Apply the concepts to measure antenna parameters. (L2)
- Design rectangular and circular patch antennas for given specifications. (L4)

UNIT- V

Wave Propagation - I: Introduction, Definitions, Categorizations and General Classifications, Different Modes of Wave Propagation, Ray/Mode Concepts, Ground Wave Propagation (Quantitative Treatment) - Introduction, Plane Earth Reflections, Space and Surface Waves, Wave Tilt, Curved Earth Reflections, Space Wave Propagation - Introduction, Field Strength Variation with Distance and Height, Effect of Earth's Curvature, Absorption, Super retraction, M- Curves and Duct Propagation, Scattering Phenomena, Tropospheric Propagation.

Wave Propagation - II: Sky Wave Propagation - Introduction, Structure of Ionosphere, Refraction and Reflection of Sky Waves by Ionosphere, Ray Path, Critical Frequency, MUF, LUF, OF, Virtual Height and Skip Distance, Relation between MUF and skip Distance, Multihop Propagation, illustrative problems.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand effects of earth's magnetic field on wave propagation (L1)
- Apply the concepts to solve problems related to wave propagation(L2)
- Analyze tropospheric propagation and derive the expression for received field strength (L3)
- Identify layers in ionosphere and their ionization densities (L1)

Course Outcomes:

- Understand various antenna parameters, principle of operation of various antennas viz. wired, aperture, micro strip antennas.
- Discuss various EM wave propagation methods in ionosphere and troposphere
- Analyze mathematical aspects of wave propagation, Derive expressions related to radiation mechanisms for antennas
- Design various antennas namely array, micro strip, horn, lens and aperture antennas, etc., for a given application.
- Compare performance of various antennas.

TEXT BOOKS:

- 1. John D. Kraus, Ronald J. Marhefka, Ahmad S. Khan, "Antennas and Wave Propagation", 4thEdition, TMH, 2010.
- 2. Jordan, E.C. and Balmain. K. G., "Electromagnetic Waves and Radiating Systems", Prentice-Hall Publications.

REFERENCES:

- 1. Constantine A. Balanis, "Antenna Theory-Analysis and Design", Wiley Publication, 2016.
- 2. K.D. Prasad, "Antenna & Wave Propagation", Satya Prakash Publications, 2009.
- 3. Matthew N.O.Sadiku, "Principle of Electromagnetics", 4th edition, Oxford (International), 2012.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-I Sem L T P C 3 0 0 3

(19A52601T) ENGLISH LANGUAGE SKILLS

Introduction

The course is designed to train students in receptive (listening and reading) as well as productive and interactive (speaking and writing) skills by incorporating a comprehensive, coherent and integrated approach that improves the learners' ability to effectively use English language skills in academic/ workplace contexts. The shift is from *learning about the language* to *using the language*. They shouldbe able to express themselves clearly in speech and competently handle the writing tasks and verbal ability component of campus placement tests. Activity based teaching-learning methods would be adopted to ensure that learners would engage in actual use of language both in the classroom and laboratory sessions.

Course Objectives

- Facilitate active listening to enable inferential learning through expert lectures and talks
- Impart critical reading strategies for comprehension of complex texts
- Provide training and opportunities to develop fluency in English through participation in formal group discussions and presentations using audio-visual aids
- Demonstrate good writing skills for effective paraphrasing, argumentative essays and formal correspondence
- Encourage use of a wide range of grammatical structures and vocabulary in speech and writing

UNIT -I

Text:

1. Lines Composed a Few Miles above Tintern Abbey - William Wordsworth

2. The Lotos-Eaters - Alfred Tennyson

Listening: Listening to famous speeches for structure and style

Speaking: Oral presentations on general topics of interest.

Reading: Reading for meaning and pleasure – reading between the lines.

Writing: Appreciating and analyzing a poem – Paraphrasing, note-taking.

Grammar and Vocabulary: Tenses (Advanced Level) Correcting errors in punctuation -Word roots and affixes.

Learning Outcomes

At the end of the module, the learners will be able to

- Understand the purpose of rhythm and rhyme and the use of figures of speech in making the presentation lively and attractive
- Apply the knowledge of structure and style in a presentation, identify the audience and make note of key points
- Make formal structured presentations on general topics using grammatical understanding
- Prioritize information from reading texts after selecting relevant and useful points
- Paraphrase short academic texts using suitable strategies and conventions

UNIT -II

Text: The Model Millionaire – Oscar Wilde

Listening: Following the development of theme; answering questions on key concepts after listening to stories online.

Speaking: Narrating personal experiences and opinions.

Reading: Reading for summarizing and paraphrasing; recognizing the difference between facts and opinions.

Writing: Summarizing, précis writing, letter and note-making

Grammar and Vocabulary: Subject-verb agreement, noun-pronoun agreement, collocations.

Learning Outcomes

At the end of the module, the learners will be able to

- Comprehend academic lectures, take notes and answer questions
- Make formal structured presentations on academic topics
- Distinguish facts from opinions while reading
- Summarize and make a précis of reports
- Use correct english avoiding common errors in formal speech and writing

Unit – III

Text: Speech at IIM Calcutta – AzimPremji

Listening: Identifying views and opinions expressed by different speakers while listening to speeches.

Speaking: Small talks on general topics; agreeing and disagreeing, using claims and examples/ evidences for presenting views, opinions and position.

Reading: Identifying claims, evidences, views, opinions and stance/position.

Writing: Writing structured persuasive/argumentative essays on topics of general interest using suitable claims, examples and evidences.

Grammar and Vocabulary: The use of Active and passive Voice, vocabulary for academic texts

Learning Outcomes

At the end of the module, the learners will be able to

- Critically follow and participate in a discussion
- participate in group discussions using appropriate conventions and language strategies
- comprehend complex texts and identify the author's purpose
- produce logically coherent argumentative essays
- use appropriate vocabulary to express ideas and opinions

UNIT – IV

Text: A Biography of Steve Jobs

Listening: Listening to identify important moments - Understanding inferences; processing of information using specific context clues from the audio.

Speaking: Group discussion; reaching consensus in group work (academic context).

Reading: Reading for inferential comprehension.

Writing: Applying for internship/ job - Writing one's CV/Resume and cover letter.

Grammar and Vocabulary: Phrasal verbs, phrasal prepositions and technical vocabulary.

Learning Outcomes

At the end of the module, the learners will be able to

- Draw inferences and conclusions using prior knowledge and verbal cues
- Express thoughts and ideas with acceptable accuracy and fluency
- Develop advanced reading skills for deeper understanding of texts
- Prepare a cv and write a cover letter to seek internship/ job
- Understand the use of technical vocabulary in academic writing

UNIT –V

Text: How I Became a Public Speaker - George Bernard Shaw

Listening: Understanding inferences - processing of explicit information presented in the text and implicit information inferable from the text or from previous/background knowledge. **Speaking:** Formal team presentations on academic/ general topics.

Reading: Intensive and extensive reading.

Writing: Structure and contents of a Report – Abstract – Project report features.

Grammar and Vocabulary: Correcting common errors, improving vocabulary and avoiding clichés and jargons.

Learning Outcomes

At the end of the module, the learners will be able to

- Develop advanced listening skills for in-depth understanding of academic texts
- Collaborate with a partner to make effective presentations
- Understand and apply the structure of project reports
- Demonstrate ability to use grammatically correct structures and a wide range of vocabulary

Course Outcomes

At the end of the course, the learners will be able to

- Understand the context, topic, and pieces of specific information from social or transactional dialogues spoken by native speakers of English
- Apply grammatical structures to formulate sentences and correct word forms
- Analyze discourse markers to speak clearly on a specific topic in informal discussions
- Evaluate reading/listening texts and to write summaries based on global comprehension of these texts.
- Create a coherent paragraph interpreting a figure/graph/chart/table

TEXT BOOK:

• "Forging Ahead": A Course Book for B.Tech Students. Orient BlackSwan, 2020.

REFERENCE BOOKS:

- 1) Bailey, Stephen. "Academic writing: A handbook for international students". Routledge, 2014.
- 2) Chase, Becky Tarver. Pathways: Listening, "Speaking and Critical Thinking". Heinley ELT; 2nd Edition, 2018.
- 3) Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Educational.
- 4) Hewings, Martin. "Cambridge Academic English" (B2). CUP, 2012. (Student Book, Teacher Resource Book, CD & DVD)
- 5). Create a coherent paragraph interpreting a figure/graph/chart/table

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-I Sem L T P C 3 0 0 3

(19A04504T) DIGITAL COMMUNICATIONS

Course Objectives:

- To understand the key modules of digital communication systems with emphasis on digital modulation techniques.
- To get introduced to the concept and basics of information theory and the basics of source and channel coding/decoding.
- To prepare mathematical background for communication signal analysis.
- To study signal flow in a digital communication system.
- To analyze error performance of a digital communication system in presence of noise and other interferences.

UNIT- I:

Source Coding Systems: Introduction, sampling process, quantization, quantization noise, conditions for optimality of quantizer, encoding, Pulse-Code Modulation (PCM), Line codes, Differential encoding, Regeneration, Decoding & Filtering, Noise considerations in PCM systems, Time-Division Multiplexing (TDM), Synchronization, Delta modulation (DM)-Granular noise Slope over distortion, Differential PCM (DPCM), Processing gain, Adaptive DPCM (ADPCM), Comparison of the above systems, Illustrative Problems.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand source coding techniques & pulse modulation techniques. (L1)
- Describe and determine the performance of line codes. (L2)
- Analyze different pulse modulation techniques &Distortions. (L3)
- Compare the performance different pulse modulation Schemes. (L5)

UNIT-II:

Baseband Pulse Transmission: Introduction, Matched filter, Properties of Matched filter, Matched filter for rectangular pulse, Error rate due to noise, Inter-symbol Interference (ISI), Nyquist's criterion for distortion less baseband binary transmission, ideal Nyquist channel, raised cosine filter & its spectrum, Correlative coding – Duo binary & Modified duo binary signalling

schemes, Partial response signalling, Baseband M-ary PAM transmission, Eye diagrams, Illustrative Problems.

Learning Outcomes:

At the end of this unit, the student will be able to

- Analyze the performance of baseband pulse transmission system. (L3)
- Describe the generation & detection of pass band modulated signals. (L2)
- Analyze probability of error for various pass band data transmission schemes. (L3)
- Compare the power bandwidth required for various pass band data transmission scheme. (L4)

UNIT- III:

Signal Space Analysis: Introduction, Geometric representation of signals, Gram-Schmidt orthogonalization procedure, Response of bank of correlators to noisy input, Coherent detection of signals in noise - maximum likelihood decoder, Probability of error, Correlation receiver, detection of signals with unknown phase, Illustrative Problems.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand the concepts of signal space analysis. (L1)
- Examine the characteristics of maximum likelihood decoder. (L2)
- Analyze correlation receiver. (L3)

UNIT- IV:

Passband Data Transmission: INTRODUCTION, Passband transmission model, Coherent modulation schemes- Generation and detection of binary phase shift keying (BPSK), Quadrature shift keying (QPSK), and Binary Frequency shift keying (BFSK). Analysis of probability of error for BPSK, QPSK, BFSK, Power spectra of above mentioned modulated signals. M-ary PSK, M-ary quadrature amplitude modulation (M-ary QAM), Non-coherent orthogonal modulation schemes - Generation and detection of non-coherent BFSK, DPSK - analysis of probability of error and Comparison of power bandwidth requirements for all the above schemes, Illustrative Problems.

Learning Outcomes:

At the end of this unit, the student will be able to

- Analyse the different digital modulation techniques, generation and detection, power spectra and their probability of error performance. (L3)
- Compare the power bandwidth, bit error probability for various modulation scheme.(L5)

UNIT- V

Channel Coding: Discrete memory less channels, Linear Block Codes-Repetition codes, Syndrome decoding, minimum distance considerations, Cyclic codes- generator polynomial, parity check polynomial, encoder for cyclic code, calculation of syndrome, Convolutional Codes – generator polynomials, state diagrams, Viterbi algorithm, Illustrative problems.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand various error control encoding and decoding techniques. (L1)
- Apply information theory and linear algebra in source coding and channel coding. (L2)
- Analyse the performance of error control codes. (L3)

Course Outcomes:

- Understand the elements of digital communication system, baseband pulse transmission, pass band digital modulation, geometric representation of signals, basics of information theory and error correcting codes.
- Apply the knowledge of signals and system & statistical theory to evaluate the performance of digital communication systems.
- Analyze the different coding, modulation techniques, Probability of error performance of digital system.
- Compare the performance of different modulation schemes& error correcting codes.

TEXT BOOKS:

- 1. Simon Haykin, "Communication Systems", Wiley India Edition, 4th Edition, 2011.
- 2. B.P. Lathi, & Zhi Ding, "Modern Digital &Analog Communication Systems", 4th edition,Oxford University Press, International 2010.

REFERENCES:

- 1. Sam Shanmugam, "Digital and Analog Communication Systems", 3rd Edition, John Wiley, 2005.
- Bruce Carlson, and Paul B. Crilly, "Communication Systems An Introduction to Signals & Noise in Electrical Communication", 5th Edition, McGraw-Hill International Edition, 2010.
- 3. Bernard Sklar, "Digital Communications", 2nd edition, Prentice-Hall PTR, 2001.
- 4. Herbert Taub and Donald L Schilling, "Principles of Communication Systems", 3rdEdition,Tata McGraw-Hill, 2009.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-I Sem L T P C 3 0 0 3

(19A05403T) OPERATING SYSTEMS

Professional Elective-I

Course Objectives:

The course is designed to

- Understand basic concepts and functions of operating systems
- Understand the processes, threads and scheduling algorithms.
- Provide good insight on various memory management techniques
- Expose the students with different techniques of handling deadlocks
- Explore the concept of file-system and its implementation issues
- Familiarize with the basics of Linux operating system
- Implement various schemes for achieving system protection and security

UNIT I

Operating Systems Overview: Introduction, Operating system functions, Operating systems operations, Computing environments, Open-Source Operating Systems

System Structures: Operating System Services, User and Operating-System Interface, systems calls, Types of System Calls, system programs, Operating system Design and Implementation, Operating system structure, Operating system debugging, System Boot.

Learning Outcomes:

At the end of this unit, the student will be able to

- Identify major components of operating systems
- Understand the types of computing environments
- Explore several open source operating systems
- Recognize operating system services to users, processes and other systems

UNIT II

Process Concept: Process scheduling, Operations on processes, Inter-process communication, Communication in client server systems.

Multithreaded Programming: Multithreading models, Thread libraries, Threading issues, Examples.

Process Scheduling: Basic concepts, Scheduling criteria, Scheduling algorithms, Multiple processor scheduling, Thread scheduling, Examples.

Inter-process Communication: Race conditions, Critical Regions, Mutual exclusion with busy waiting, Sleep and wakeup, Semaphores, Mutexes, Monitors, Message passing, Barriers, Classical IPC Problems - Dining philosophers problem, Readers and writers problem.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand the importance, features of a process and methods of communication between processes.
- Improving CPU utilization through multi programming and multithreaded programming
- Examine several classical synchronization problems

UNIT III

Memory-Management Strategies: Introduction, Swapping, Contiguous memory allocation, Paging, Segmentation, Examples.

Virtual Memory Management: Introduction, Demand paging, Copy on-write, Page replacement, Frame allocation, Thrashing, Memory-mapped files, Kernel memory allocation, Examples.

Learning Outcomes:

At the end of this unit, the student will be able to

- Examine the various techniques of allocating memory to processes
- Summarize how paging works in contemporary computer systems
- Understanding the benefits of virtual memory systems.

UNIT IV

Deadlocks: Resources, Conditions for resource deadlocks, Ostrich algorithm, Deadlock detection And recovery, Deadlock avoidance, Deadlock prevention.

File Systems: Files, Directories, File system implementation, management and optimization. Secondary-Storage Structure: Overview of disk structure, and attachment, Disk scheduling, RAID structure, Stable storage implementation.

Learning Outcomes:

At the end of this unit, the student will be able to

- Investigate methods for preventing/avoiding deadlocks
- Examine file systems and its interface in various operating systems
- Analyze different disk scheduling algorithms

UNIT V

System Protection: Goals of protection, Principles and domain of protection, Access matrix, Access control, Revocation of access rights.

System Security: Introduction, Program threats, System and network threats, Cryptography as a security, User authentication, implementing security defenses, firewalling to protect systems and networks, Computer security classification.

Case Studies: Linux, Microsoft Windows.

Learning Outcomes:

At the end of this unit, the student will be able to

- Infer various schemes available for achieving system protection.
- Acquiring knowledge about various countermeasures to security attacks
- Outline protection and security in Linux and Microsoft Windows.

Course Outcomes

By the end of this course students will be able to:

- Realize how applications interact with the operating system
- Analyze the functioning of a kernel in an Operating system.
- Summarize resource management in operating systems
- Analyze various scheduling algorithms
- Examine concurrency mechanism in Operating Systems
- Apply memory management techniques in design of operating systems
- Understand the functionality of file system
- Compare and contrast memory management techniques.
- Understand the deadlock prevention and avoidance.
- Perform administrative tasks on Linux based systems.

Text Books:

- 1. Silberschatz A, Galvin P B, and Gagne G, Operating System Concepts, 9th edition, Wiley, 2016.
- 2. Tanenbaum A S, Modern Operating Systems, 3rd edition, Pearson Education, 2008. (Topics: Inter-process Communication and File systems.)

Reference Books:

- 1. Tanenbaum A S, Woodhull A S, Operating Systems Design and Implementation, 3rd edition, PHI, 2006.
- 2. Dhamdhere D M, Operating Systems A Concept Based Approach, 3rd edition, Tata McGraw-Hill, 2012.
- 3. Stallings W, Operating Systems -Internals and Design Principles, 6th edition, Pearson Education, 2009
- 4. Nutt G, Operating Systems, 3rd edition, Pearson Education, 2004

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-I Sem L T P C 3 0 0 3

(19A02403) POWER ELECTRONICS Professional Elective-I

Course Objectives:

The student will be able to:

- 1. Understand the differences between signal level and power level devices.
- 2. Analyze controlled rectifier circuits.
- 3. Analyze the operation of DC-DC choppers.
- 4. Analyze the operation of voltage source inverters.

UNIT-I: Power Switching Devices

Diode, Thyristor, MOSFET, IGBT: I-V Characteristics; Firing circuit for thyristor; Voltage and current commutation of a thyristor; Gate drive circuits for MOSFET, IGBT and GTO.

Learning Outcomes:

At the end of the unit, students will be able to

- Understand the basic power semiconductor devices their construction, principle of working and their characteristics.
- Understand in detail about SCR i.e., its characteristics, series and parallel connection of SCR's, specification, its ratings and various commutation methods.
- Apply the above concepts to solve numerical problems.

UNIT-II: Thyristor Rectifiers

Single-phase half-wave and full-wave rectifiers, Single-phase full-bridge thyristor rectifier with R-load and highly inductive load; Three-phase full-bridge thyristor rectifier with R-load and highly inductive load; Input current wave shape and power factor-Numerical problems.

Learning Outcomes:

At the end of the unit, students will be able to

- Understand the concepts of phase control technique, midpoint and bridge connections of half and full controlled converters with various loads for both 1Ø and 3Ø phase converters, effect of source inductance and dual converters.
- Analyze and evaluate voltages and currents, active and reactive power inputs to converter with and without freewheeling diode for 1Ø and 3Ø converters.
- Apply the above concepts to solve numerical problems.

UNIT-III: DC-DC buck converter

Elementary chopper with an active switch and diode, concepts of duty ratio and average voltage, power circuit of a buck converter, analysis and waveforms at steady state, duty ratio control of output voltage.

DC-DC boost converter:

Power circuit of a boost converter, analysis and waveforms at steady state, relation between duty ratio and average output voltage.

Learning Outcomes:

At the end of the unit, students will be able to

- Understand the concepts of various control strategies, types of choppers and analyze their principle operation, waveforms of voltages and currents at different loads.
- Apply the above concepts to solve numerical problems.

UNIT-IV:

Single phase Voltage Source inverters – operating principle - steady state analysis, Simple forced commutation circuits for bridge inverters – Mc Murray and Mc Murray Bedford inverters, Voltage control techniques for inverters and Pulse width modulation techniques, single phase current source inverter with ideal switches, basic series inverter, single phase parallel inverter – basic principle of operation only, Three phase bridge inverters (VSI) – 180 degree mode – 120 degree mode of operation - Numerical problems.

Learning Outcomes:

At the end of the unit, students will be able to

- Understand the construction, working of single phase voltage inverters with their waveforms in various operating modes when different loads are applied and the different modulating techniques available.
- Understand the construction, working of three phase voltage inverters with their waveforms in various operating modes when different loads are applied, harmonic components and the different modulating techniques available.
- Apply the above concepts to solve numerical problems.

UNIT-V: AC VOLTAGE CONTROLLERS & CYCLO CONVERTERS:

AC voltage controllers – Principle of phase control – Principle of integral cycle control - Single phase two SCRs in anti parallel – With R and RL loads – modes of operation of Triac – Triac with R and RL loads – RMS load voltage, current and power factor - wave forms – Numerical problems. Cyclo converters - Midpoint and Bridge connections - Single phase to single phase step-up and step-down cyclo converters with Resistive and inductive load, Principle of operation, Waveforms, output voltage equation.

Learning Outcomes:

At the end of the unit, students will be able to

- Understand the concept of AC voltage controllers
- Understand the concept of Cyclo Converters

Course Outcomes:

At the end of this course students will be able to:

- Understand the operation, characteristics and usage of basic Power Semiconductor Devices.
- Understand different types of Rectifier circuits with different operating conditions.
- Understand DC-DC converters operation and analysis of their characteristics.
- Understand the construction and operation of voltage source inverters, Voltage Controllers and Cyclo Converters.
- Apply all the above concepts to solve various numerical problem solving

TEXT BOOKS:

- 1. M. H. Rashid, "Power Electronics: Circuits, Devices and Applications", 2nd edition, Prentice Hall of India, 1998
- 2. P.S.Bimbhra,"Power Electronics", 4th Edition, Khanna Publishers, 2010.
- 3. M. D. Singh & K. B. Kanchandhani, "Power Electronics", Tata Mc Graw Hill Publishing Company, 1998.

REFERENCE BOOKS:

- 1. Ned Moha, "Power Electronics", Wiley, 2011.
- 2. Robert W. Erickson and Dragan Maksimovic, "Fundamentals of Power Electronics" 2nd Edition, Kluwer Academic Publishers, 2004.
- 3. Vedam Subramanyam, "Power Electronics", New Age International (P) Limited, 1996.
- 4. V.R.Murthy, "Power Electronics", 1st Edition, Oxford University Press, 2005.
- 5. P.C.Sen, "Power Electronics", Tata Mc Graw-Hill Education, 1987.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-I Sem L T P C 3 0 0 3

(19A05303T) OBJECT ORIENTED PROGRAMMING THROUGH JAVA

Professional Elective-I

Course Objectives:

- To understand object oriented concepts and problem solving techniques
- To obtain knowledge about the principles of inheritance and polymorphism
- To implement the concept of packages, interfaces, exception handling and concurrency mechanism.
- To design the GUIs using applets and swing controls.
- To understand the Java Database Connectivity Architecture

UNIT - I

Introduction: Introduction to Object Oriented Programming, The History and Evolution of Java, Introduction to Classes, Objects, Methods, Constructors, this keyword, Garbage Collection, Data Types, Variables, Type Conversion and Casting, Arrays, Operators, Control Statements, Method Overloading, Constructor Overloading, Parameter Passing, Recursion, String Class and String handling methods.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand the syntax, semantics and features of Java Programming Language.
- Learn object oriented features and understanding type conversion and casting.
- Understand different types of string handling functions and its usage.

UNIT - II

Inheritance: Basics, Using Super, Creating Multilevel hierarchy, Method overriding, Dynamic Method Dispatch, Using Abstract classes, Using final with inheritance, Object class,

Packages: Basics, Finding packages and CLASSPATH, Access Protection, Importing packages.

Interfaces: Definition, Implementing Interfaces, Extending Interfaces, Nested Interfaces, Applying Interfaces, Variables in Interfaces.

Learning Outcomes:

At the end of this unit, the student will be able to

- Implement types of Inheritance and developing new classes based on existing classes
- Distinguish between system packages and user defined packages.
- Demonstrate features of interfaces to implement multiple inheritances.

UNIT - III

Exception handling - Fundamentals, Exception types, Uncaught exceptions, using try and catch, multiple catch clauses, nested try statements, throw, throws and finally, built- in exceptions, creating own exception sub classes.

Stream based I/O (java.io) – The Stream classes-Byte streams and Character streams, Reading console Input and Writing Console Output, File class, Reading and writing Files, Random access file operations, The Console class, Serialization, Enumerations, Autoboxing, Generics.

Learning Outcomes:

At the end of this unit, the student will be able to

- Learn what exceptions are and how they are handled.
- Learn when to use exception handling and how to create user defined exceptions
- Learn the difference between various files and streams.

UNIT - IV

Multithreading: The Java thread model, Creating threads, Thread priorities, Synchronizing threads, Interthread communication.

The Collections Framework (java.util): Collections overview, Collection Interfaces, The Collection classes- Array List, Linked List, Hash Set, Tree Set, Priority Queue, Array Deque. Hashtable, Properties, Stack, Vector, String Tokenizer, Bit Set, Date, Calendar, Random, Formatter, Scanner.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand concurrency, parallelism and multithreading
- Learn the importance of collections and use prebuilt generic data structures from framework.

UNIT – V

Applet: Basics, Architecture, Applet Skeleton, requesting repainting, using the status window, passing parameters to applets

GUI Programming with Swings – The origin and design philosophy of swing, components and containers, layout managers, event handling, using a push button, jtextfield, jlabel and image icon, the swing buttons, jtext field, jscrollpane, jlist, jcombobox, trees, jtable, An overview of jmenubar, jmenu and jmenuitem, creating a main menu, showmessagedialog, showconfirmdialog, showinputdialog, showoptiondialog, jdialog, create a modeless dialog.

Accessing Databases with JDBC:

Types of Drivers, JDBC Architecture, JDBC classes and Interfaces, Basic steps in developing JDBC applications, Creating a new database and table with JDBC.

Learning Outcomes:

At the end of this unit, the student will be able to

- Learn how to use the Nimbus look-and-feel
- Understand the GUI programming.
- Understand basic steps in developing JDBC applications,

Course Outcomes:

After the completion of the course the student will be able

- To solve real world problems using OOP techniques.
- To apply code reusability through inheritance, packages and interfaces
- To solve problems using java collection framework and I/O classes.
- To develop applications by using parallel streams for better performance.
- To develop applets for web applications.
- To build GUIs and handle events generated by user interactions.
- To use the JDBC API to access database

Text Books:

1. Herbert Schildt "Java The complete reference", 9th edition, McGraw Hill Education (India) Pvt. Ltd.

2. Paul Dietel, Harvey Dietel "Java How to Program", 10th Edition, Pearson Education.

REFERENCE BOOKS:

- 1. T. Budd "Understanding Object-Oriented Programming with Java", updated edition, Pearson Education.
- 2. Cay S. Horstmann, "Core Java Volume 1 Fundamentals", Pearson Education.
- 3. Sagayaraj, Dennis, Karthik and Gajalakshmi, "Java Programming for core and advanced learners" University Press
- 4. Y. Daniel Liang, "Introduction to Java programming", Pearson Education.
- 5. P. Radha Krishna, "Object Oriented Programming through Java", University Press.
- 6. S. Malhotra, S. Chudhary, "Programming in Java", 2nd edition, Oxford Univ. Press.
- 7. R.A. Johnson, "Java Programming and Object-oriented Application Development", Cengage Learning.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE) – III-I Sem L T P C 3 0 0 3

(19A04504a) DATA COMMUNICATIONS AND NETWORKING

Professional Elective-I

Course Objectives:

- To explain the basic concept of computer communication networks
- To demonstrate the TCP/IP and OSI models with merits and demerits.
- To explore the various layers of OSI Model.
- To introduce IP addressing, UDP and TCP Models.
- To have the concept of different routing techniques for data communications.

UNIT- I

Introduction to Computer Networks: Uses of computer Network, Network Software-design Issues for layers, Service primitives and relationship of services to Protocols, Reference models- OSI & TCP/IP, network architectures introduction, Example of Networks-X.25, Frame Relay & ATM, Protocols and Standards.

Learning Outcomes:

At the end of this unit, the student will be able to

- Enumerate the layers of the OSI model and TCP/IP. (L1)
- Explain the function(s) of each layer. (L2)

UNIT- II

Physical Layer: Physical layer - Data rate limits, Transmission media-guided and Unguided, Switching systems, Circuit switching, Datagram switching & Virtual circuit switching, Structure of circuit and packet switch, cable modem and DSL technologies, SONET basics, selection of IEEE std 802.11, a, b, c, g.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand principles of data communication using transmission (guided and wireless) media. (L1)
- Know to the concepts of various switching techniques. (L1)

• Explain the basics of DSL, SONET, and IEEE standards. (L2)

UNIT- III

Data link layer: Framing, Flow & Error control Protocols, HDLC, PPP, Multiple access techniques, random access, controlled access & Channelization, Ethernet types-bridged, Switched, Full duplex, Fast & gigabit Ethernet, Introduction to Data link layer in 802.11 LAN, connecting devices like passive hubs, repeaters, Active hubs, Bridges, Two-layer Switches, Routers, three layer switches, Gateway etc., Backbone networks, Virtual LANs, Simple Router architecture, Sliding window protocol.

Learning Outcomes:

At the end of this unit, the student will be able to

- List the different connecting devices for networking. (L1)
- Understand the principles of error control protocols, multiple access protocols, routers and switches in data link layer. (L1)
- Solve the error control and multiple access based problems. (L2)

UNIT- IV

Network Layer: IPv4 address, IPv6 address, Address mapping-ARP, RARP & DHCP, IPv4 datagram detail format, IPv6 datagram detail format, ICMP, IGMP, Network layer issues like Delivery, forwarding, intra-domain and Inter-domain routing, Routing algorithms like Shortest path routing, Flooding, Distance Vector Routing, Link State Routing, Path vector routing etc., Addressing types-Physical, Logical & port address.

Transport Layer: Transport layer-Process to process delivery, Connection oriented & Connectionless Transport, UDP, TCP, congestion control and Quality of Service.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand the concepts of IPvx and different protocols.(L1)
- Apply the knowledge on different routing algorithms and measure their performance metrics.(L2)
- Distinguish between the connection oriented and connection less transport protocols.(L4)

UNIT- V

Application Layer: Application layer protocols and applications like Ping, FTP, telnet, HTTP, SMTP, SNMP, TFTP, BOOTP, DNS, NFS, RPC, X-server, E-mail, Introduction to streaming Audio/Video,P2P file sharing, Introduction to socket programming.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand the importance of application layer and the terminology like FTP, HTTP, SMTP, SNMP, TFTP etc., (L1)
- Know about the P2P file sharing and socket programming.(L2)

Course Outcomes:

- Understand the requirement of theoretical & practical aspects of computer networks, functions of various layers involved in data communications, building the skills of sub netting and routing mechanisms.
- Explain the role of protocols in networking.
- Analyze the services and features of the various layers in the protocol stack.

TEXT BOOKS:

- 1. Behrouz A. Forouzan, "Data Communications and Networking", 4th Edition, Tata McGraw Hill, 2007.
- 2. Andrew Tenenbaum, "Computer Networks", 4th Edition, Pearson Education.
- 3. Kurose & Ross, "Computer Networking- A top down approach featuring the Internet", 3rd Edition, Pearson Education.
- 4. William Stallings, "Computer Networks and Cryptography", 3rd Edition, Pearson Education.

REFERENCES:

- 1. Behrouz A. Forouzan, "TCP/IP protocol Suit", 3rd Edition, Tata McGraw Hill Publications.
- 2. Stevens, "TCP/IP illustrated Volume I & II", Pearson education.
- 3. Feibel Werner, "Encyclopedia of networking", Pearson education.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE) – III-I Sem L T P C 3 0 0 3

(19A04504b) NANO ELECTRONICS Professional Elective-I

Course Objectives

- To introduce the challenges in CMOS VLSI device design and fundamental limits of operation.
- To study novel MOS based silicon devices and various multi gate devices.
- To learn about SOI devices and its performance comparison with Silicon devices
- To understand the underlying concepts by setting up and solving the Schrödinger equation for different types of potentials in one dimension as well as in 2 or 3 dimensions for specific cases.
- To understand nano electronic systems and building blocks such as: low-dimensional semiconductors, hetero structures, carbon nano tubes, quantum dots, nano wires etc.
- To gain knowledge on spin electronic devices.
- To familiarize students with the present research front in Nano electronics and to be able to critically assess future trends.

UNIT- I:

Challenges going to sub-100 nm MOSFETs Oxide layer thickness, tunneling, power density, non-uniform dopant concentration, threshold voltage scaling, lithography, hot electron effects, sub-threshold current, velocity saturation, interconnect issues, fundamental limits for MOS operation.

Learning Outcomes:

At the end of this unit, the student will be able to

- Retrieving the challenges and current trends of CMOS technologies. (L1)
- Explain the fabrication process and limitations in the CMOS design. (L2)

UNIT-II:

Novel MOS-based devices Multiple gate MOSFETs, Silicon-on-insulator, Silicon-on-nothing, Fin FETs, vertical MOSFETs, strained Si devices.

Learning Outcomes:

At the end of this unit, the student will be able to

- Inferring the latest MOS device in several aspects of latest configurations like SOI, SON, Strained Si and FETs. (L2).
- Choosing different models of MOS devices according to the requirement. (L3)

UNIT-III:

Quantum structures quantum wells, quantum wires and quantum dots, Single electron devices charge quantization, energy quantization, Coulomb blockade, Coulomb staircase, Bloch oscillations.

Learning Outcomes:

At the end of this unit, the student will be able to

- Categorize the structure of trendy devices. (L2)
- Integrate and model the device with basic quantum structures. (L4)

UNIT-IV:

Hetero structure based devices Type I, II and III hetero junctions, Si-Ge hetero structure, hetero structures of III-V and II-VI compounds - resonant tunneling devices.

Learning Outcomes:

At the end of this unit, the student will be able to

- Correlating device structures with type of materials, which are commonly used for fabrication (L5)
- Defend the tunneling devices with several parameters of hetero structures. (L5)

UNIT-V:

Carbon nanotubes based devices CNFET, characteristics; Spin-based devices spin FET, characteristics, Applications of MOSFET, CNFET and Spin FET devices.

Learning Outcomes:

At the end of this unit, the student will be able to

- Criticize based on characteristics study for the MOS/FET devices. (L5)
- Adapt the device in specific applications in real-time. (L2)

Course Outcomes:

- Retrieving the challenges and current trends of CMOS technologies.
- Explain the fabrication process and limitations in the CMOS design, Inferring the latest MOS device in several aspects of latest configurations like SOI, SON, Strained Si and FETs, Categorize the structure of trendy devices, Adapt the device in specific applications in real-time.
- Choosing different models of MOS devices according to the requirement.
- Integrate and model the device with basic quantum structures.
- Correlating device structures with type of materials, which are commonly used for fabrication, defend the tunneling devices with several parameters of hetero structures; compare characteristics study for the MOS/FET devices.

TEXT BOOKS:

- 1. Mircea Dragoman and Daniela Dragoman, "Nano electronics Principles & devices", Artech House Publishers, 2005.
- 2. Karl Goser, "Nanoelectronics and Nanosystems: From Transistors to Molecular and Quantum Devices", Springer 2005.

REFERENCE BOOKS:

- 1. Mark Lundstrom and Jing Guo, "Nanoscale Transistors: Device Physics Modelling and Simulation", Springer, 2005.
- 2. Vladimir V Mitin, Viatcheslav A Kochelap and Michael A Stroscio, "Quantum hetero structures", Cambridge University Press, 1999.
- 3. S M Sze (Ed), "High speed semiconductor devices", Wiley, 1990.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)–III-I L T P C 3 0 0 3

(19A01506a) EXPERIMENTAL STRESS ANALYSIS OPEN ELECTIVE-I

Course Objective:

To bring awareness on experimental method of finding the response of the structure to different types of load.

- Demonstrates principles of experimental approach.
- Teaches regarding the working principles of various strain gauges.
- Throws knowledge on strain rosettes and principles of non destructive testing of concrete.
- Gives an insight into the principles of photo elasticity.

UNIT-I

PRINCIPLES OF EXPERIMENTAL APPROACH: - Merits of Experimental Analysis Introduction, uses of experimental stress analysis advantages of experimental stress analysis, Different methods –Simplification of problems.

Learning outcomes:

At the end of the unit, students will be able to:

- Demonstrate the merits and principles of experimental approach
- Give an insight into the uses and advantages of experimental stress analysis

UNIT-II

STRAIN MEASUREMENT USING STRAIN GAUGES: - Definition of strain and its relation of experimental Determinations Properties of Strain Gauge Systems-Types of Strain Gauges – Mechanical, Acoustic and Optical Strain Gauges. Introduction to Electrical strain gauges - Inductance strain gauges – LVDT – Resistance strain gauges – various types –Gauge factor – Materials of adhesion base.

Learning outcomes:

At the end of the unit, students will be able to:

- Introduce various strain gauge systems and their properties
- Give information regarding the gauge factor and materials of adhesion bases

UNIT-III

STRAIN ROSSETTES AND NON – DESTRUCTIVE TESTING OF CONCRETE:-Introduction – the three elements Rectangular Rosette – The Delta Rosette Corrections for Transverse Strain Gauge. Ultrasonic Pulse Velocity method –Application to Concrete. Hammer Test – Application to Concrete.

Learning outcomes:

At the end of the unit, students will be able to:

- Introduces various strain rosettes and corrections for strain gauges
- Gives an insight into the destructive and non destructive testing of concrete

UNIT-IV

THEORY OF PHOTOELASTICITY: - Introduction – Temporary Double refraction – The stress Optic Law –Effects of stressed model in a polariscope for various arrangements – Fringe Sharpening. Brewster's Stress Optic law.

Learning outcomes:

At the end of the unit, students will be able to:

- Introduces stress optic laws.
- Gives the arrangements and working principles of polariscope.

UNIT-V

TWO DIMENSIONAL PHOTOELASTICITY: - Introduction – Iso-chromatic Fringe patterns-Isoclinic Fringe patterns passage of light through plane Polariscope and Circular polariscope Isoclinic Fringe patterns – Compensation techniques – Calibration methods – Separation methods – Scaling Model to prototype Stresses – Materials for photo – Elasticity Properties of Photoelastic Materials.

Learning outcomes:

At the end of the unit, students will be able to:

- Introduces the understanding of different fringe patterns.
- Introduces model analysis and properties of photo elastic materials.

Course Outcomes:

After completion of the course

- The student will be able to understand different methods of experimental stress analysis
- The student will be able to understand the use of strain gauges for measurement of strain
- The student will be exposed to different Non destructive methods of concrete
- The student will be able to understand the theory of photo elasticity and its applications in analysis of structures

TEXT BOOKS:-

- 1. J.W.Dally and W.F.Riley, "Experimental stress analysis College House Enterprises"
- 2. Dr.Sadhu Singh, "Experimental stress analysis", khanna Publishers

REFERENCE BOOKS:

- 1. U.C.Jindal, "Experimental Stress analysis", Pearson Publications.
- 2. L.S.Srinath, "Experimental Stress Analysis", MC.Graw Hill Company Publishers.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE) –III-I L T P C 3 0 0 3

(19A01506b) BUILDING TECHNOLOGY OPEN ELECTIVE-I

Course Objectives:

- To impart to know different types of buildings, principles and planning of the buildings.
- To identify the termite control measure in buildings, and importance of grouping circulation, lighting and ventilation aspects in buildings.
- To know the different modes of vertical transportation in buildings.
- To know the utilization of prefabricated structural elements in buildings.
- To know the importance of acoustics in planning and designing of buildings.

UNIT-I

Overview of the course, basic definitions, buildings-types-components- economy and designprinciples of planning of buildings and their importance. Definitions and importance of grouping and circulation-lighting and ventilation-consideration of the above aspects during planning of building.

Learning outcomes:

At the end of the unit, students will be able to:

• To be able to plan the building with economy and according to functional requirement.

UNIT-II

Termite proofing: Inspection-control measures and precautions- lighting protection of buildingsgeneral principles of design of openings-various types of fire protection measures to be considered while panning a building.

Learning outcomes:

At the end of the unit, students will be able to:

- Able to know the termite proofing technique to the building and protection form lightening effects.
- To be able to know the fire protection measure that are to be adopted while planning a building.

UNIT-III

Vertical transportation in a building: Types of vertical transportation-stairs-different forms of stairs- planning of stairs- other modes of vertical transportation – lifts-ramps-escalators.

Learning outcomes:

At the end of the unit, students will be able to:

• To be able to know the different modes of vertical transportation and their suitability

UNIT-IV

Prefabrication systems in residential buildings- walls-openings-cupboards-shelves etc., planning and modules and sizes of components in prefabrication. Planning and designing of residential buildings against the earthquake forces, principles, seismic forces and their effect on buildings.

Learning outcomes:

At the end of the unit, students will be able to:

- Identify the adoption of prefabricated elements in the building.
- Know the effect of seismic forces on buildings

UNIT-V

Acoustics – effect of noise – properties of noise and its measurements, principles of acoustics of building. Sound insulation- importance and measures.

Learning outcomes:

At the end of the unit, students will be able to:

• To know the effect of noise, its measurement and its insulation in planning the buildings

Course Outcomes:

After completion of the course the student will be able to

- Understand the principles in planning and design the buildings.
- Know the different methods of termite proofing in buildings.
- Know the different methods of vertical transportation in buildings.
- Know the implementation of prefabricated units in buildings and effect of earthquake on buildings.
- Know the importance of acoustics in planning and designing of buildings.

TEXT BOOKS :

- 1. Varghese, "Building construction", PHI Learning Private Limited.
- 2. Punmia.B.C, "Building construction", Jain.A.K and Jain.A.K Laxmi Publications.
- 3. S.P.Arora and S.P.Brndra "Building construction", Dhanpat Rai and Sons Publications, New Delhi
- 4. "Building construction-Technical teachers training institute", Madras, Tata McGraw Hill.

REFERENCE BOOKS:

1. National Building Code of India, Bureau of Indian Standards

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE) –III-I L T P C 2 1 0 3

(19A02506a) ELECTRICAL ENGINEERING MATERIALS (OPEN ELECTIVE-I)

Course Objectives:

To make the students learn about

- Classification of materials.
- Properties of materials and its applications.
- Domestic wiring and earthing

UNIT-I Conducting Materials

Introduction – classification of materials – Metals and Non metals, physical, thermal, mechanical and electrical properties of materials – classification of electrical materials – concept of atom – electron configuration of atom, conductors, general properties of conductors, factors effecting resistivity of electrical materials –electrical/mechanical/thermal properties of copper, aluminum, iron, steel, lead, tin and their alloys – applications.

Learning outcomes:

At the end of the unit, students will be able to:

- Uunderstand the classification of conducting materials.
- Analyze the properties of different conducting materials
- Apply the materials where it is applicable
- Know about electron configuration of atom

UNIT-II Dielectric and High Resistivity Materials

Introduction – solid, liquid and gaseous dielectrics, leakage current, permittivity, dielectric constant, dielectric loss – loss angle – loss constant, Breakdown voltage and dielectric strength of – solid, liquid and gaseous dielectrics, effect of break down– electrical and thermal effects, Polarization – electric, ionic and dipolar polarization. Effect of temperature and Frequency on dielectric constant of polar dielectrics. High Resistivity materials – electrical / thermal / mechanical properties of Manganin, Constantan, Nichrome, Tungsten, Carbon and Graphite and their applications in electrical equipment.

Learning outcomes:

At the end of the unit, students will be able to:

- Understand the classification of dielectric and high resistivity materials.
- Analyze the properties of dielectric and high resistivity materials
- Understand about concept of polarization and dipolar polarization

• Apply the materials where it is applicable

UNIT-III Solid Insulating Materials

Introduction – characteristics of a good electrical insulating materials – classification of insulating materials – electrical, thermal, chemical and mechanical properties of solid insulating materials - Asbestos, Bakelite, rubber, plastics, thermo plastics. Resins, polystyrene, PVC, porcelain, glass, cotton and paper.

Learning outcomes:

At the end of the unit, students will be able to:

- Understand about various characteristics of solid insulating materials
- Understand the classification of solid insulating materials.
- Analyze the properties of solid insulating materials
- Apply the materials where it is applicable

UNIT-IV Liquid & Gas Insulating Materials

Liquid insulating materials – Mineral oils, synthetic liquids, fluorinated liquids – Electrical, thermal and chemical properties – transformer oil – properties – effect of moisture on insulation properties Gaseous insulators – classification based on dielectric strength – dielectric loss, chemical stability properties and their applications.

Unit Outcomes:

At the end of the unit, the student will be able to

- Understand the classification of liquid insulating materials.
- Analyze the properties of liquid insulating materials
- Apply the materials where it is applicable
- Understand about properties and classification of gaseous insulators

UNIT-V Domestic Wiring

Wiring materials and accessories – Types of wiring – Types of Switches - Specification of Wiring – Stair case wiring - Fluorescent lamp wiring- Godown wiring – Basics of Earthing – single phase wiring layout for a residential building.

Learning Outcomes:

At the end of the unit, the student will be able to

- Understand about wiring materials and accessories
- Understand about earthing and wiring layout of domestic buildings
- Design and develop Residential wiring

• Know about godown wiring

Course Outcomes:

After completing the course, the student should be able to:

- Understand the classification of materials, domestic wiring materials and earthing.
- Analyze the properties of different electrical materials
- Apply where the materials are applicable based on properties of materials
- Design and develop Residential wiring, godown wiring and earthing.

Text Books:

- 1. G.K. Mithal, "Electrical Engineering Materials", Khanna publishers, 2nd edition, 1991.
- 2. R.K. Rajput, A course in "Electrical Engineering Materials", Laxmi publications, 2009.

Reference Books:

- 1. C.S. Indulkar and S. Thiruvengadam, "An Introduction to Electrical Engineering Materials" S Chand & Company, 2008.
- 2. Technical Teachers Training Institute, "Electrical engineering Materials", 1st Edition, Madras, McGraw Hill Education, 2004.
- 3. by S.P. Seth, "A course in Electrical Engineering Materials Physics Properties & Applications", Dhanapat Rai & Sons Publications, 2018.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-I L T P C 3 0 0 3

(19A03506a) INTRODUCTION TO HYBRID AND ELECTRIC VEHICLES OPEN ELECTIVE-I

Course Objectives:

- Provide good foundation on hybrid and electrical vehicles.
- To address the underlying concepts and methods behind power transmission in hybrid and electrical vehicles.
- Familiarize energy storage systems for electrical and hybrid transportation.
- To design and develop basic schemes of electric vehicles and hybrid electric vehicles.

UNIT I: Electric Vehicle Propulsion and Energy Sources

Introduction to electric vehicles, vehicle mechanics - kinetics and dynamics, roadway fundamentals propulsion system design - force velocity characteristics, calculation of tractive power and energy required, electric vehicle power source - battery capacity, state of charge and discharge, specific energy, specific power, Ragone plot. battery modeling - run time battery model, first principle model, battery management system- soc measurement, battery cell balancing. Traction batteries - nickel metal hydride battery, Li-Ion, Lipolymer battery.

Learning Outcomes:

After successful completion of this unit, the students will be able to

- Summaries the concepts of electrical vehicle propulsion and energy sources. (12)
- Identify the types of power sources for electrical vehicles.(13)
- Demonstrate the design considerations for propulsion system. (12)
- Solve the problems on tractive power and energy required. (13)

UNIT II: Electric Vehicle Power Plant And Drives

Introduction electric vehicle power plants. Induction machines, permanent magnet machines, switch reluctance machines. Power electronic converters-DC/DC converters - buck boost converter, isolated DC/DC converter. Two quadrant chopper and switching modes. AC drives-PWM, current control method. Switch reluctance machine drives - voltage control, current control.

Learning Outcomes:

After successful completion of this unit, the students will be able to

- Choose a suitable drive scheme for developing an electric vehicles depending on resources.(11)
- List the various power electronic converters. (11)
- Describe the working principle dc/dc converters and buck boost convertor. (l2)
- Explain about ac drives. (l2)

UNIT III: Hybrid And Electric Drive Trains

Introduction hybrid electric vehicles, history and social importance, impact of modern drive trains in energy supplies. Hybrid traction and electric traction. Hybrid and electric drive train topologies. Power flow control and energy efficiency analysis, configuration and control of DC motor drives and induction motor drives, permanent magnet motor drives, switch reluctance motor drives, drive system efficiency.

Learning Outcomes:

After successful completion of this unit, the students will be able to

- Identify the social importance of hybrid vehicles. (13)
- Discus impact of modern drive trains in energy supplies. (16)
- Compare hybrid and electric drive trains.(l2)
- Analyze the power flow control and energy efficiency. (16)

UNIT IV: Electric and Hybrid Vehicles - Case Studies

Parallel hybrid, series hybrid -charge sustaining, charge depleting. Hybrid vehicle case study – Toyota Prius, Honda Insight, Chevrolet Volt. 42 V system for traction applications. Lightly hybridized vehicles and low voltage systems. Electric vehicle case study - GM EV1, Nissan Leaf, Mitsubishi Miev. Hybrid electric heavy duty vehicles, fuel cell heavy duty vehicles.

Learning Outcomes:

After successful completion of this unit, the students will be able to

- List the various electric and hybrid vehicles in the present market. (11)
- Discus lightly hybridized vehicle and low voltage systems.(16)
- Explain about hybrid electric heavy duty vehicles and fuel cell heavy duty vehicles. (12)

UNIT V: Electric And Hybrid Vehicle Design :

Introduction to hybrid vehicle design. Matching the electric machine and the internal combustion engine. Sizing of propulsion motor, power electronics, drive system. Selection of energy storage technology, communications, supporting subsystem. Energy management strategies in hybrid and electric vehicles - energy management strategies- classification, comparison, implementation.

Learning Outcomes:

After successful completion of this unit, the students will be able to

- Illustrate matching the electric machine and the internal combustion engine. (12)
- Select the energy storage technology. (13)
- Select the size of propulsion motor. (13)
- Design and develop basic schemes of electric and hybrid electric vehicles. (13)

Course outcomes:

After learning the course the students will be able to:

- Explain the working of hybrid and electric vehicles. (12)
- Choose a suitable drive scheme for developing an hybrid and electric vehicles depending on resources. (13)
- Develop the electric propulsion unit and its control for application of electric vehicles.(l3)
- Choose proper energy storage systems for vehicle applications. (13)
- Design and develop basic schemes of electric vehicles and hybrid electric vehicles.(13)

Text Books :

- Iqbal Hussein, "Electric and Hybrid Vehicles: Design Fundamentals", 2nd edition, CRC Press, 2003.
- Amir Khajepour, M. Saber Fallah, Avesta Goodarzi, "Electric and Hybrid Vehicles: Technologies, Modeling and Control - A Mechatronic Approach", illustrated edition, John Wiley & Sons, 2014.
- 3. Mehrdad Ehsani, YimiGao, Sebastian E. Gay, Ali Emadi, "Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design", CRC Press, 2004.

References:

- 1. James Larminie, John Lowry, "Electric Vehicle Technology", Explained, Wiley, 2003.
- John G. Hayes, <u>G. Abas Goodarzi</u>, "Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel Cell Vehicles", 1st edition, Wiley-Blackwell, 2018.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE) – III-I L T P C 3 0 0 3

(19A03506b) RAPID PROTOTYPING OPEN ELECTIVE-I

Course Objectives:

- Familiarize techniques for processing of CAD models for rapid prototyping.
- Explain fundamentals of rapid prototyping techniques.
- Demonstrate appropriate tooling for rapid prototyping process.
- Focus Rapid prototyping techniques for reverse engineering.
- Train Various Pre Processing, Processing and Post Processing errors in RP Processes.

UNIT – I

Introduction: Introduction to Prototyping, Traditional Prototyping Vs. Rapid Prototyping (RP), Need for time compression in product development, Usage of RP parts, Generic RP process, Distinction between RP and CNC, other related technologies, Classification of RP. **RP Software:** Need for RP software, MIMICS, Magics, SurgiGuide, 3-matic, 3D-Doctor, Simplant, Velocity2, VoXim, SolidView, 3DView, etc., software, Preparation of CAD models, Problems with STL files, STL file manipulation, RP data formats: SLC, CLI, RPI, LEAF, IGES, HP/GL, CT, STEP.

Learning Outcomes:

At the end of the unit, the student will be able to

- Explain prototyping process. (l2)
- Classify different rapid prototyping processes. (l2)
- Summarize rp software's and represent a 3d model in stl format, other rp data formats. (12)

$\mathbf{UNIT}-\mathbf{II}$

Solid and Liquid Based RP Systems: Stereolithography (SLA): Principle, Process, Materials, Advantages, Limitations and Applications. Solid Ground Curing (SGC): Principle, Process, Materials, Advantages, Limitations, Applications.

Fusion Deposition Modeling (FDM): Principle, Process, Materials, Advantages, Limitations, Applications. Laminated Object Manufacturing (LOM): Principle, Process, Materials, Advantages, Limitations, Applications.

Learning Outcomes:

8 Hours

10 Hours

At the end of the unit, the student will be able to

- Explain the principles, advantages, limitations and applications of Solid and Liquid based AM systems. (L2)
- Identify the materials for Solid and Liquid based AM systems. (L2)

UNIT – III

8 Hours

Powder Based RP Systems: Principle and Process of Selective Laser Sintering (SLS), Advantages, Limitations and Applications of SLS, Principle and Process of Laser Engineered Net Shaping (LENS), Advantages, Limitations and Applications of LENS, Principle and Process of Electron Beam Melting (EBM), Advantages, Limitations and Applications of EBM.

Other RP Systems: Three Dimensional Printing (3DP): Principle, Process, Advantages, Limitations and Applications. Ballastic Particle Manufacturing (BPM): Principle, Process, Advantages, Limitations, Applications. Shape Deposition Manufacturing (SDM): Principle, Process, Advantages, Limitations, Applications.

Learning Outcomes:

At the end of the unit, the student will be able to

- Explain the principles, advantages, limitations and applications of powder based AM systems. (L2)
- Understand the principles, advantages, limitations and applications of other Additive Manufacturing Systems such as 3D Printing, Ballistic Particle Manufacturing and Shape Deposition Modeling. (L2)

UNIT – IV

8 Hours

Rapid Tooling: Conventional Tooling Vs. Rapid Tooling, Classification of Rapid Tooling, Direct and Indirect Tooling Methods, Soft and Hard Tooling methods.

Reverse Engineering (**RE**): Meaning, Use, RE – The Generic Process, Phases of RE Scanning, Contact Scanners and Noncontact Scanners, Point Processing, Application Geometric Model, Development.

Learning Outcomes:

At the end of the unit, the student will be able to

- Classify Rapid Tooling methods. (L2)
- Explain the concepts of reverse engineering and scanning tools. (L2)

UNIT – V

8 Hours

Errors in RP Processes: Pre-processing, processing, post-processing errors, Part building errors in SLA, SLS, etc.

RP Applications: Design, Engineering Analysis and planning applications, Rapid Tooling, Reverse Engineering, Medical Applications of RP.

Learning Outcomes:

At the end of the unit, the student will be able to

- Identify various Pre Processing, Processing and Post Processing errors in RP processes. (L2)
- Apply of RP in engineering design analysis and medical applications. (L3)

Course Outcomes:

At the end of the course, the student will be able to

- Use techniques for processing of CAD models for rapid prototyping. (L3)
- Understand and apply fundamentals of rapid prototyping techniques. ((L3)
- Use appropriate tooling for rapid prototyping process. (L3)
- Use rapid prototyping techniques for reverse engineering. (L3)
- Identify Various Pre Processing, Processing and Post Processing errors in RP processes. (L3)

Text Books:

- 1. Chua C.K., Leong K.F. and Lim C.S., "Rapid Prototyping: Principles and Applications", 2nd edition, World Scientific Publishers, 2003.
- Ian Gibson, David W. Rosen, Brent Stucker, "Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing", 1st Edition, Springer, 2010.
- 3. Rafiq Noorani, "Rapid Prototyping: Principles and Applications in Manufacturing", John Wiley & Sons, 2006.

Reference Books:

- 1. Liou W. Liou, Frank W., Liou, "Rapid Prototyping and Engineering Applications: A Tool Box for Prototype Development", CRC Press, 2007.
- 2. Pham D.T. and Dimov S.S., "Rapid Manufacturing; The Technologies and Application of RPT and Rapid tooling", Springer, London 2001.
- 3. Gebhardt A., "Rapid prototyping", Hanser Gardener Publications, 2003.
- 4. Hilton P.D. and Jacobs P.F., "Rapid Tooling: Technologies and Industrial Applications", CRC Press, 2005.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-I L T P C 3 0 0 3

(19A04506a) ANALOG ELECTRONICS OPEN ELECTIVE-I

Course Objectives:

- To understand the characteristics of various types of electronic devices and circuits (L1).
- To apply various principles of electronic devices and circuits to solve complex Engineering problems (L2).
- To analyze the functions of various types of electronic devices and circuits (L3).
- To evaluate the functions of various types of electronic devices and circuits in real time applications (L3).
- To design various types of electronic circuits for use in real time applications (L4).

UNIT-I:

Diodesand Applications

Properties of intrinsic and extrinsic semiconductor materials. Characteristics of PN junction diode and Zener diode. Applications of PNdiode as a switch, rectifier and Zener diode as regulator. Special purpose diodes: Schottky diode, Tunnel diode, Varactor diode, photodiode and LED.

Learning Outcomes:

At the end of the unit, the student should be able to

- Understand the characteristics of various types of diodes (L1).
- Apply the principles of diodes to solve complex Engineering problems (L2).
- Analyze the functions of diodes in forward and reverse bias conditions (L3).
- Evaluate the functions of diodes in real time applications (L3).
- Design rectifiers and switches using diodes (L4).

UNIT-II:

BJT and its Applications

Construction, Operation, and Characteristics in CE, CB and CC configurations. Fixed-Bias and Voltage Divider-Bias. Applications as switch and amplifier.

Learning Outcomes:

At the end of the unit, the student should be able to

- Understand the characteristics and biasing of BJT (L1).
- Apply the principles of BJT to solve complex Engineering problems (L2).
- Analyse the functions of BJT in various configurations (L3).
- Evaluate the functions of BJT in real time applications (L3).
- Design amplifiers and switches using BJT (L4).

UNIT-III:

FETs and Applications

JFETs:Construction, Operation, and Characteristics in CS configurations. Fixed-Bias and Voltage Divider -Bias. Applications as switch and amplifier.

MOSFETs:Construction, Operation, and Characteristics of Enhancement and Depletion modes in CS configurations. Biasing in Enhancement and Depletion modes. Applications as switch.

Learning Outcomes:

At the end of the unit, the student should be able to

- Understand the characteristics and biasing of FETs (L1).
- Apply the principles of FETsto solve complex Engineering problems (L2).
- Analyze the functions of FETs in CSconfiguration (L3).
- Evaluate the functions of FETs in real time applications (L3).
- Design amplifiers and switches using FETs (L4).

UNIT-IV:

Feedback Amplifiers and Oscillators

Feedback Amplifiers: Concept of feedback, General characteristics of negative feedback amplifiers, Voltage-series, Current-series, Voltage-shunt, and Current-shunt feedback amplifiers. **Oscillators:**Conditions for oscillations, Hartley and Colpitts oscillators, RC phase-shift and Wien-bridge oscillators.

Learning Outcomes:

At the end of the unit, the student should be able to

- Understand the concept of negative & positive feedback and characteristics feedback amplifiers (L1).
- Apply the principles of feedback amplifiers and oscillators to solve complex Engineering problems (L2).
- Analyze the functions of feedback amplifiers and oscillators (L3).

- Evaluate the functions of feedback amplifiers and oscillators in real time applications (L3).
- Design feedback amplifiers and oscillators for specific applications (L4).

UNIT-V: Wave-Shaping & Multivibrator Circuits and Linear Integrated Circuits

Wave-Shaping & Multivibrator Circuits: Introduction, Waveform Shaping Circuits –RC and RL Circuits. Clippers, Comparator and Clampers. Bistable, Schmitt Trigger, Monostable and Astable Multivibrators.

Linear Integrated Circuits: Operational Amplifier: Introduction, Block diagram, Basic applications – Inverting, Non-inverting, Summing amplifier, Subtractor, Voltage Follower. IC 555 Timer and IC 7805 Regulator.

Learning Outcomes:

At the end of the unit, the student should be able to

- Understand the operation of Wave-Shaping & Multivibrator Circuits and Linear Integrated Circuits (L1).
- Apply the principles of Wave-Shaping & Multivibrator Circuits and Linear Integrated Circuits to complex Engineering solve problems (L2).
- Analyse the functions of Wave-Shaping & Multivibrator Circuits and Linear Integrated Circuits (L3).
- Evaluate the functions of Wave-Shaping & Multivibrator Circuits and Linear Integrated Circuits in real time applications (L3).
- Design Wave-Shaping & Multivibrator Circuits and Linear Integrated Circuits for specific applications (L4).

Note: In all the units, only qualitative treatment is required.

Course Outcomes:

At the end of the course, the student should be able to

- Understand the characteristics of various types of electronic devices and circuits
- Apply various principles of electronic devices and circuits to solve complex
- Engineering problems
- Analyse the functions of various types of electronic devices and circuits, Evaluate the functions of various types of electronic devices and circuits in real time applications
- Design various types of electronic circuits for use in real time applications.

TEXT BOOKS:

1. S. Salivahanan and N. Suresh Kumar, "Electronic Devices and Circuits", 4th Edition, McGraw Hill Education (India) Pvt Ltd., 2017.

REFERENCES:

- 1. J. Milliman, Christos C Halkias, and Satyabrata Jit, "Electronics Devices and Circuits", 4th Edition, McGraw Hill Education (India) Pvt Ltd., 2015.
- 2. David A. Bell "Electronics Devices and Circuits", 5th Edition, Oxford University Press, 2008.

Blooms' learning levels:

L1: Remembering and UnderstandingL2: ApplyingL3: Analyzing/DeriveL4: Evaluating/DesignL5: Creating

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-I L T P C 3 0 0 3

(19A04506b) DIGITAL ELECTRONICS OPEN ELECTIVE-I

Course Objectives:

- To introduce different methods for simplifying Boolean expressions
- To analyze logic processes and implement logical operations using combinational logic circuits
- To understand characteristics of memory and their classification.
- To understand concepts of sequential circuits and to analyze sequential systems in terms of state machines
- To understand concept of Programmable Devices

UNIT- I

Minimization Techniques and Logic Gates Minimization Techniques: Boolean postulates and laws – De-Morgan's Theorem - Principle of Duality - Boolean expression - Minimization of Boolean expressions — Minterm – Maxterm - Sum of Products (SOP) – Product of Sums (POS) – Karnaugh map Minimization – Don't care conditions – Quine - McCluskey method of minimization. Logic Gates: AND, OR, NOT, NAND, NOR, Exclusive–OR and Exclusive–NOR Implementations of Logic Functions using gates, NAND– NOR implementations – Multi level gate implementations- Multi output gate implementations. TTL and CMOS Logic and their characteristics – Tristate gates.

Learning Outcomes:

At the end of the unit, the student should be able to:

- Learn Boolean algebra and logical operations in Boolean algebra. (L1)
- Apply different logic gates to functions and simplify them. (L2)
- Analyze the redundant terms and minimize the expression using Kmaps and tabulation methods (L3)

UNIT- II

Combinational Circuits -Design procedure – Half adder – Full Adder – Half subtractor – Full subtractor – Parallel binary adder, parallel binary Subtractor – Fast Adder - Carry Look Ahead adder – Serial Adder/Subtractor - BCD adder – Binary Multiplier – Binary Divider - Multiplexer/

Demultiplexer – decoder - encoder – parity checker – parity generators – code converters - Magnitude Comparator.

Learning Outcomes:

At the end of the unit, the student should be able to:

- Apply the logic gates and design of combinational circuits(L2)
- Design of different combinational logic circuits(L4)

UNIT -III

Sequential Circuits-Latches, Flip-flops - SR, JK, D, T, and Master-Slave – Characteristic table and equation –Application table – Edge triggering – Level Triggering – Realization of one flip flop using other flip flops – serial adder/subtractor- Asynchronous Ripple or serial counter – Asynchronous Up/Down counter - Synchronous counters – Synchronous Up/Down counters – Programmable counters – Design of Synchronous counters: state diagram- State table –State minimization –State assignment - Excitation table and maps-Circuit implementation - Modulo–n counter, Registers – shift registers - Universal shift registers – Shift register counters – Ring counter – Shift counters - Sequence generators.

Learning Outcomes:

At the end of the unit, the student should be able to:

- Understand the clock dependent circuits (L1)
- Identify the differences between clocked and clock less circuits, apply clock dependent circuits(L2)
- Design clock dependent circuits(L4)

UNIT -IV

Memory Devices Classification of memories – ROM - ROM organization - PROM – EPROM – EEPROM –EAPROM, RAM – RAM organization – Write operation – Read operation – Memory cycle - Timing wave forms – Memory decoding – memory expansion – Static RAM Cell- Bipolar RAM cell – MOSFET RAM cell – Dynamic RAM cell –Programmable Logic Devices – Programmable Logic Array (PLA) - Programmable Array Logic (PAL) – Field Programmable Gate Arrays (FPGA) - Implementation of combinational logic circuits using ROM, PLA, PAL

Learning Outcomes:

At the end of the unit, the student should be able to:

- Understand the principle of operation of basic memory devices, and programmable logic devices. (L1)
- Implement combinational logic circuits using memory and programmable logic devices (L2)

UNIT -V

Synchronous and Asynchronous Sequential Circuits Synchronous Sequential Circuits: General Model – Classification – Design – Use of Algorithmic State Machine – Analysis of Synchronous Sequential Circuits Asynchronous Sequential Circuits: Design of fundamental mode and pulse mode circuits – Incompletely specified State Machines – Problems in Asynchronous Circuits – Design of Hazard Free Switching circuits.

Learning Outcomes:

At the end of the unit, the student should be able to:

- Understand how synchronous and asynchronous sequential circuit works (L1)
- Understand the FSM and its design principles. (L1)
- Analyze the procedure to reduce the internal states in sequential circuits (L3)
- Illustrate minimization of complete and incomplete state machines and to write a minimal cover table(L2)

Course Outcomes:

- Explain switching algebra theorems and apply them for logic functions, discuss about digital logic gates and their properties, Identify the importance of SOP and POS canonical forms in the minimization of digital circuits.
- Evaluate functions using various types of minimizing algorithms like Boolean algebra, Karnaugh map or tabulation method.
- Analyze the design procedures of Combinational & sequential logic circuits.
- Design of different combinational logic circuits, and compare different semiconductor memories.

Text Books:

- M. Morris Mano, "Digital Design", 4th Edition, Prentice Hall of India Pvt. Ltd., 2008 / Pearson Education (Singapore) Pvt. Ltd., New Delhi, 2003.
- 2. Zvi Kohavi, "Switching and Finite Automata Theory", 3rd Edition, South Asian Edition, 2010,

References:

- 1. John F. Wakerly, "Digital Design", Fourth Edition, Pearson/PHI, 2008
- 2. John.M Yarbrough, "Digital Logic Applications and Design", Thomson Learning, 2006.
- 3. Charles H.Roth. "Fundamentals of Logic Design", 6th Edition, Thomson Learning, 2013.
- 4. Donald P.Leach and Albert Paul Malvino, "Digital Principles and Applications", 6th Edition, TMH, 2006.
- 5. Thomas L. Floyd, "Digital Fundamentals", 10th Edition, Pearson Education Inc, 2011
- 6. Donald D.Givone, "Digital Principles and Design", TMH, 2003.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-I L T P C 3 0 0 3

(19A05506a) FREE AND OPEN SOURCES SYSTEMS (Open Elective –I) (Common to CSE & IT)

Course Objectives:

This course is designed to:

- Understand the context and operation of free and open source software (FOSS) communities and associated software projects.
- Motivate the students to contribute in FOSS projects
- Familiarize with programming languages like Python, Perl, Ruby
- Elucidate the important FOSS tools and techniques

UNIT I PHILOSOPHY

Notion of Community--Guidelines for effectively working with FOSS community--, Benefits of Community based Software Development --Requirements for being open, free software, open source software –Four degrees of freedom - FOSS Licensing Models - FOSS Licenses – GPL-AGPL-LGPL - FDL - Implications – FOSS examples.

Learning outcomes:

At the end of the unit, students will be able to:

- Analyze the benefits of Community based Software Development. (L4)
- Explain the degrees of Freedom. (L2)

UNIT II LINUX

Linux Installation and Hardware Configuration – Boot Process-The Linux Loader (LILO) - The Grand Unified Bootloader (GRUB) - Dual-Booting Linux and other Operating System - Boot-Time Kernel Options- X Windows System Configuration-System Administration – Backup and Restore Procedures- Strategies for keeping a Secure Server.

Learning outcomes:

At the end of the unit, students will be able to:

- Demonstrate Linux Installation and hardware configuration. (L2)
- Compare Linux and Windows System Configurations. (L4)

UNIT III PROGRAMMING LANGUAGES

Programming using languages like Python, Perl, Ruby

Learning outcomes:

At the end of the unit, students will be able to:

- Explain the syntax of programming Languages Python, Perl and Ruby. (L2)
- Develop applications in the Open source programming Languages. (L6)

UNIT IV PROGRAMMING TOOLS AND TECHNIQUES

Usage of design Tools like Argo UML or equivalent, Version Control Systems like Git or equivalent, – Bug Tracking Systems- Package Management Systems

Learning outcomes:

At the end of the unit, students will be able to:

- List various programming tools and explain their uses (L1)
- Make use of the various tools while building applications (L3)

UNIT V FOSS CASE STUDIES

Open Source Software Development - Case Study - Libre office -Samba

Learning outcomes:

At the end of the unit, students will be able to:

- Elaborate the open Source Software Development(L6)
- Compare Libre office with its proprietary equivalent (L5)

Course Outcomes:

Upon completion of the course, the students should be able to:

- Demonstrate Installation and running of open-source operating systems.(L2)
- Justify the importance of Free and Open Source Software projects. (L5)
- Build and adapt one or more Free and Open Source Software packages. (L6)
- Utilize a version control system. (L3)
- Develop software to and interact with Free and Open Source Software development projects.(L3)

TEXT BOOK:

Ellen Siever, Stephen Figgins, Robert Love, Arnold Robbins, "Linux in a Nutshell", Sixth Edition, OReilly Media, 2009.

REFERENCES:

- 1. Philosophy of GNU URL: http://www.gnu.org/philosophy/.
- 2. Linux Administration URL: http://www.tldp.org/LDP/lame/LAME/linux-admin-made-easy/.
- 3. The Python Tutorial available at http://docs.python.org/2/tutorial/.
- 4. Perl Programming book at http://www.perl.org/books/beginning-perl/.
- 5. Ruby programming book at http://ruby-doc.com/docs/ProgrammingRuby/.
- 6. Version control system URL: http://git-scm.com/.
- 7. Samba: URL : http://www.samba.org/.
- 8. Libre office: http://www.libreoffice.org/.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-I L T P C 3 0 0 3

(19A05506b) COMPUTER GRAPHICS and MULTIMEDIA ANIMATION (Open Elective –I) (Common to CSE & IT)

Course Objectives:

This course is designed to:

- Introduce the use of the components of a graphics system and become familiar with the building approach of graphics system components and related algorithms.
- Understand the basic principles of 3- 3-dimensional computer graphics.
- Provide insites on how to scan, convert the basic geometrical primitives, how to transform the shapes to fit them as per the picture definition.
- Provide an understanding of mapping from world coordinates to device coordinates, clipping, and projections.
- Discuss the application of computer graphics concepts in the development of computer games, information visualization, and business applications.

UNIT I OVERVIEW OF COMPUTER GRAPHICS SYSTEM

OverView of Computer Graphics System – Video display devices – Raster Scan and random scan system – Input devices – Hard copy devices.

Learning outcomes:

At the end of the unit, students will be able to:

- Explain the overview of computer graphics with visualization. (L2)
- Classify the Input devices. (L2)
- Distinguish raster scan and random scan systems. (L4)

UNIT II OUTPUT PRIMITIVES AND ATTRIBUTES

Drawing line, circle and ellipse generating algorithms – Scan line algorithm – Character Generation – attributes of lines, curves and characters – Antialiasing.

Learning outcomes:

At the end of the unit, students will be able to:

- Analyse output primitives and attributes. (L4)
- Design algorithms based on output. (L6)

UNIT III TWO DIMENSIONAL GRAPHICS TRANSFORMATIONS AND VIEWING:

Two-dimensional Geometric Transformations – Windowing and Clipping – Clipping of lines and clipping of polygons.

Learning outcomes:

At the end of the unit, students will be able to:

- Create two-dimensional graphics. (L6)
- Examine the clipping of polygon. (L4)
- Compare different forms of variations. (L2)

UNIT IV THREE DIMENSIONAL GRAPHICS AND VIEWING

Three-dimensional concepts – Object representations- Polygon table, Quadric surfaces, Splines, Bezier curves and surfaces – Geometric and Modelling transformations – Viewing - Parallel and perspective projections.

Learning outcomes:

At the end of the unit, students will be able to:

- Create three-dimensional graphics. (L6)
- Explain the Quadric surfaces and polygon table. (L2)
- Define modelling transformations. (L1)

UNIT V REMOVAL OF HIDDEN SURFACES

Visible Surface Detection Methods – Computer Animation.

Learning outcomes:

At the end of the unit, students will be able to:

- List the different types of detection methods. (L1)
- Compare various computer animations. (L2)

Course outcomes:

Upon completion of the course, the students should be able to:

- Explain the basic concepts used in computer graphics. (L2)
- Inspect various algorithms to scan, convert the basic geometrical primitives, transformations, Area filling, clipping. (L4)
- Assess the importance of viewing and projections. (L5)

- Define the fundamentals of animation, virtual reality and its related technologies. (L3)
- Analyze the typical graphics pipeline (L4)

TEXTBOOK

1. Hearn, D. and Pauline Baker, M., Computer Graphics (C-Version), 2nd Edition, Pearson Education, 2002.

REFERENCES

1. Neuman, W.M., and Sproull, R.F., Principles of Interactive Computer Graphics, Mc Graw Hill Book Co., 1979.

 Roger, D.F., Procedural elements for Computer Graphics, Mc Graw Hill Book Co., 1985.
 Asthana, R.G.S and Sinha, N.K., Computer Graphics, New Age Int. Pub. (P) Ltd., 1996.

4. Floey, J.D., Van Dam, A, Feiner, S.K. and Hughes, J.F, Computer Graphics, Pearson Education, 2001.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-I L T P C 3 0 0 3

(19A27506a) BREWING TECHNOLOGY OPEN ELECTIVE - I

PREAMBLE

This course covers the origin of brewing and ingredients used, methods and equipment used and innovations in this field.

Coues Objectives

- To understand the Beer manufacturing, ingredients and their roles.
- To understand overall view of a brewing industry

UNIT – I

Introduction of brewing, history of brewing; Raw materials: barley, hops, water, yeast; Adjuncts for beer production: Maize, rice, millet, wheat, sugar etc. Malt production, role of enzymes for malting; Barley storage, steeping, germination, kilning, cooling, storage;

Learning Outcomes:

At the end of the unit, the student should be able to:

- Introduction of brewing, history of brewing
- Raw materials like barley, hops, water, yeast
- Adjuncts for beer production: Maize, rice, millet, wheat, sugar etc
- Malt production, role of enzymes for malting
- Barley storage, steeping, germination, kilning, cooling, storage

UNIT – II

Malt from other cereals, caramel malt, roasted malt, smoked malt, malt extract; Malt quality evaluation, Wort production, malt milling, Mashing, Mashing vessels; Wort boiling, clarification, cooling and aeration Enzyme properties, starch degradation, b-glucan degradation; Conversion of fatty matter, Biological acidification

Learning Outcomes:

At the end of the unit, the student should be able to:

- Malt from other cereals, caramel malt, roasted malt, smoked malt, malt extract
- Malt quality evaluation, Wort production, malt milling, Mashing, Mashing vessels
- Wort boiling, clarification, cooling and aeration Enzyme properties, starch degradation, b-glucan degradation
- Conversion of fatty matter, Biological acidification

UNIT – III

Beer production methods, fermentation technology, changes during fermentation; Filtration procedure and equipment, beer stabilization conditions and durations, beer carbonation process; Packaging equipment and packaging materials, storage conditions and distribution process

Learning Outcomes:

At the end of the unit, the student should be able to:

- Beer production methods, fermentation technology, changes during fermentation
- Filtration procedure and equipment, beer stabilization conditions and durations, beer carbonation process
- Packaging equipment and packaging materials, storage conditions and distribution process

UNIT – IV

Brewing Equipment. Grain mill, kettles, siphons, carboys, fermentation equipment, wort chillers, pumps beer bottles, cans, labels, bottle caps, sanitation equipments Preventive Production of beer against technology, ling phenomenon of beer, possible measures against staling reactions, oxidation

Learning Outcomes:

At the end of the unit, the student should be able to:

- Brewing Equipments like Grain mill, kettles, siphons, carboys, fermentation equipment, wort chillers
- pumps beer bottles, cans, labels, bottle caps, sanitation equipments
- Preventive Production of beer against technology, ling phenomenon of beer, possible measures against staling reactions, oxidation

UNIT – V

Recent advances: Immobilized Cell Technology in Beer Production, immobilized yeast cell technology Energy management in the brewery and maltings; waste water treatment Automation and plant planning

Learning Outcomes:

At the end of the unit, the student should be able to:

- Immobilized Cell Technology in Beer Production, immobilized yeast cell technology
- Energy management in the brewery and maltings
- waste water treatment Automation and plant planning

Course Outcomes:

By the end of this course, students will attain the:

- Knowledge of beer making, chemistry of ingredients used for brewing,
- Knowledge on brewing industry, Unit operations and equipments involved.

TEXT BOOKS

- 1. Brewing: "Science and Practice, Brookes and Roger Stevens", Dennis E. Briggs, Chris A. Boulton, Peter A. 2004, Woodhead publishing limited.
- 2. Die Deutsche "Bibliothek Technology: "Brewing and Malting", Wolfgang Kunze. 2010, Bibliographic information published

REFERENCES

- "Handbook of Brewing": Process, Technology, Markets, Hans Michael Eblinger. 2009, Wiley-VCH Verlag GmbH & Co.
- 2. Brewing: "New Technologies", Charles W. Bamforth. 2006, Woodhead Pub.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-I L T P C 3 0 0 3

(19A27506b) COMPUTER APPLICATIONS IN FOOD INDUSTRY (OPEN ELECTIVE – I)

PREAMBLE

This course covers all facets of computerization and various software's used and their usage.

Course Objectives

- Able to know about "The necessity of Software & their applications in Food Industries"
- Able to Implement the Programs in 'C' to perform various operations that are related to Food Industries.

UNIT – I

Computerization, Importance of Computerization in food industry and IT applications in food industries. Computer operating environments and information system for various types of food industries. Introduction to Bar charts and Pie charts & the procedure to develop bar charts and pie charts on given Data.

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Computerization, Importance of Computerization in food industry and IT applications in food industries.
- Computer operating environments and information system for various types of food industries.
- Introduction to Barcharts and Piecharts & the procedure to develop barcharts and piecharts on given Data.

UNIT – II

Introduction to Software & Programming Languages, Properties, Differences of an Algorithm and Flowcharts, Advantages and disadvantages of Flowcharts & Algorithms. Introduction, Fundamentals & advantages of 'C'. Steps in learning 'C' (Character set, Identifiers, Keywords) Steps in learning 'C' (Data types, Constants, Variables, Escape sequences).

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Introduction to Software & Programming Languages, Properties, Differences of an Algorithm and Flowcharts
- Advantages and disadvantages of Flowcharts & Algorithms. Introduction, Fundamentals & advantages of 'C'.
- Steps in learning 'C' (Character set, Identifiers, Keywords)
- Steps in learning 'C' (Data types, Constants, Variables, Escape sequences).

UNIT – III

Steps in learning 'C' (Operators, Statements) Steps in learning 'C' (Header Files, Input & Output functions: Formatted I/O functions, Unformatted I/O functions). Basic Structure of a simple 'C' program. Decision Making/Control Statements. Branching, Concept of Looping & Looping statements.

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Steps in learning 'C' (Operators, Statements)
- Steps in learning 'C' (Header Files, Input & Output functions: Formatted I/O functions).
- Basic Structure of a simple 'C' program. Decision Making/Control Statements.
- Branching, Concept of Looping & Looping statements.

UNIT – IV

Concept of Functions (Defining a function & Function Prototypes, Types of functions: Library functions & User defined functions. Concept of various types of User Defined Functions (i.e., About 4 types). Concept of Arrays & Types of Arrays (Single, Double and Multi-Dimensional Arrays). Concept of a String Library Functions.

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Concept of Functions (Defining a function & Function Prototypes, Types of functions: Library functions & User defined functions.
- Concept of various types of User Defined Functions (i.e., About 4 types).
- Concept of Arrays & Types of Arrays (Single, Double and Multi-Dimensional Arrays).
- Concept of a String Library Functions.

$\mathbf{UNIT} - \mathbf{V}$

Concept of Pointers, Structures & Unions. Introduction to Data Structures, Types of Data Structures (Primary & Secondary Data Structures) Concept of Linked Lists, Types of Linked Lists & Basic operations on linked Lists. Concept of Stacks & Operations on Stacks (PUSH & POP Operations) Concept of Queues and types of Queues Operations on a Queue (ENQUEUE & DEQUEUE Operations)

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Concept of Pointers, Structures & Unions. Introduction to Data Structures, Types of Data Structures (Primary & Secondary Data Structures)
- Concept of Linked Lists, Types of Linked Lists & Basic operations on linked Lists.
- Concept of Stacks & Operations on Stacks (PUSH & POP Operations)
- Concept of Queues and types of Queues Operations on a Queue (ENQUEUE & Dequeue Operations)

Course Outcomes

By the end of the course, the students will be able to

- know about the various steps which are related to computer and Software and their application in Food Industries
- know about the various steps which are necessary to implement the programs in 'C'

TEXT BOOKS

- 1. Yeswanth Kanethkar, Let us 'C'
- 2. Balaguruswamy E., "Computer Programming in 'C""
- 3. Mark Allen Waise, "Data Structures"

REFERENCES

- 1. M. S Excel 2000, Microsoft Corporation
- 2. M. S. Office Microsoft Corporation
- 3. Verton M.V. "Computer concepts for Agri Business", AVI Pub. Corp., West Port, USA.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE) –III-I L T P C 3 0 0 3

(19A54506a) OPTIMIZATION TECHNIQUES (OPEN ELECTIVE-I)

Course Objectives:

The student will be able to learn:

- The basic concepts of Optimization
- The emphasis of this course is on different classical Optimization techniques linear programming and simplex algorithms.
- About optimality of balanced transportation Problems
- About Constrained and unconstrained nonlinear programming.
- About principle of optimality and dynamic programming

UNIT – I Introduction and Classical Optimization Techniques:

Statement of an Optimization problem – design vector – design constraints – constraint surface – objective function – objective function surfaces – classification of Optimization problems. Classical Optimization Techniques: Single variable Optimization – multi variable Optimization without constraints – necessary and sufficient conditions for minimum/maximum – multivariable Optimization with equality constraints. Solution by method of Lagrange multipliers – multivariable Optimization with inequality constraints – Kuhn – Tucker conditions – Numerical examples.

Learning Outcomes:

At the end of unit, students will be able to understand the following

- To know how to formulate statement of optimization problem with or without constraints
- To know about classification of single and multivariable optimization problems
- To know about necessary and sufficient conditions in defining the optimization problems
- To understand how to formulate Kuhn-Tucker conditions and to solve numerical problems

UNIT – II Linear Programming

Standard form of a linear programming problem – geometry of linear programming problems – definitions and theorems – solution of a system of linear simultaneous equations – pivotal reduction of a general system of equations – motivation to the simplex method – simplex algorithm – Numerical examples.

Learning Outcomes:

At the end of unit, students will be able to understand the following

- To know about formulation of LPP
- To know about formulations of GPP
- To understand various theorems in solving simultaneous equations
- To understand about necessity of Simplex method and to solve numerical problems

UNIT - III Nonlinear Programming - One Dimensional Minimization methods

Introduction, Unimodal function, Elimination methods- Unrestricted Search, Exhaustive Search, Dichotomous Search, Fibonacci Method, Golden Section Method and their comparison; Interpolation methods - Quadratic Interpolation Method, Cubic Interpolation Method and Direct Root Methods – Numerical examples.

Learning Outcomes:

At the end of unit, students will be able to understand the following

- To know about NLP in one dimensional optimization problems
- To understand about various search methods
- To learn about various interpolation methods
- To distinguish and compare the various elimination methods with numerical examples

UNIT – IV Unconstrained & Constrained Nonlinear Programming

Unconstrained Optimization Techniques: Introduction- Classification of Unconstrained Minimization Methods, General Approach, Rate of Convergence, Scaling of Design Variables; Direct Search methods- Random Search Methods, Grid Search Method, Pattern Directions, Powell's Method and Simplex Method

Constrained Optimization Techniques: Introduction, Characteristics of a Constrained Problem, Direct Search Methods - Random Search Methods, Basic Approach in the Methods of Feasible Directions, Rosen's Gradient Projection Method, Generalized Reduced Gradient Method and Sequential Quadratic Programming.

Learning Outcomes:

At the end of unit, students will be able to understand the following

- To distinguish between unconstrained and constrained optimization problems
- To learn about direct search methods in unconstrained NLP problems and comparison
- To understand about direct search methods in constrained NLP problems and comparison

• To do exercises for solving numerical examples of various methods

UNIT – V Dynamic Programming

Dynamic programming multistage decision processes – types – concept of sub optimization and the principle of optimality – computational procedure in dynamic programming – examples illustrating the calculus method of solution - examples illustrating the tabular method of solution – Numerical examples.

Learning Outcomes:

At the end of unit, students will be able to understand the following

- To know what is DP problem?
- To know about computational procedure in solving DPP
- To know Calculus and Tabular methods of solving with numerical examples of various methods

Course Outcomes:

The student gets thorough knowledge on:

- Basic methods, principles in optimization
- Formulation of optimization models, solution methods in optimization
- Finding initial basic feasible solutions.
- Methods of linear and non-linear (constrained and unconstrained) programming.
- Applications to engineering problems.

TEXT BOOKS:

- 1. S. S. Rao, "Engineering optimization": Theory and practice 3rd edition, New Age International (P) Limited, 1998.
- 2. H.S. Kasana & K.D. Kumar, "Introductory Operations Research Springer (India)", 2004.

REFERENCES:

- 1. R Fletcher, "Practical Methods of Optimization", 2nd Edition, Wiley Publishers, 2000.
- 2. Jorge Nocedal and Wright S, "Numerical Optimization Springer", 1st Edition, 1999.
- 3. by K.V. Mital and C. Mohan, "Optimization Methods in Operations Research and systems Analysis" 3rd Edition, New Age International (P) Limited, 1996.
- 4. by S.D. Sharma, "Operations Research", Kedar Nath, 2012.
- 5. by H.A. Taha, "Operations Research", 9th Edition, An Introduction Pearson, 2010.
- 6. G. Hadley, "Linear Programming", Narosa, 2002.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE) – III-I L T P C 3 0 0 3

(19A52506a) TECHNICAL COMMUNICATION AND PRESENTATION SKILLS (OPEN ELECTIVE)

Course Objectives:

- To develop awareness in students of the relevance and importance of technical communication and presentation skills.
- To prepare the students for placements
- To sensitize the students to the appropriate use of non-verbal communication
- To train students to use language appropriately for presentations and interviews
- To enhance the documentation skills of the students with emphasis on formal and informal writing

SYLLABUS

UNIT -1:

Basics of Technical Communication – Introduction – Objectives & Characteristics of Technical Communication – Importance and need for Technical communication - LSRW Skills – Barriers to effective communication

Learning Outcomes:

At the end of the module, the learners will be able to

- Understand the importance of LSRW skills
- Identify and overcome the barriers to effective communication
- Realize the need and importance of technical communication

UNIT -II

Informal and Formal Conversation - Verbal and Non-verbal communication –Kinesics, Proxemics, Chronemics, Haptics, Paralanguage

Learning Outcomes:

At the end of the module, the learners will be able to

- State the difference between formal and informal conversation.
- Apply the knowledge of the difference between the verbal and non-verbal communication
- Evaluate the different aspects of non-verbal communication.

UNIT -III

Written communication – Differences between spoken and written communication – Features of effective writing –Advantages and disadvantages of spoken and written communication- Art of condensation- summarizing and paraphrasing

Learning Outcomes:

At the end of the module, the learners will be able to

- Know the difference between written and spoken communication
- Apply the awareness of features of effective writing.
- Implement the understanding of summarizing and paraphrasing.

UNIT -IV

Presentation Skills – Nature and importance of oral presentation – Defining the purpose – Analyzing the audience - Planning and preparing the presentation, organizing and rehearsing the presentation –Individual and group presentations - Handling stage fright

Learning Outcomes:

At the end of the module, the learners will be able to

- State the importance of presentation skills in corporate climate.
- Analyze the demography of the audience.
- Plan, prepare and present individual and group presentations.

UNIT -V

Interview Skills – The Interview process –Characteristics of the job interview – Pre-interview preparation techniques – Projecting the positive image – Answering Strategies

Learning Outcomes:

At the end of the module, the learners will be able to

- Identify the characteristics of the job interview.
- Understand the process of Interviews.
- Develop a positive image using strategies in answering FAQs in interviews

Course Outcomes

- Understand the importance of effective technical communication
- Apply the knowledge of basic skills to become good orators
- Analyze non-verbal language suitable to different situations in professional life
- Evaluate different kinds of methods used for effective presentations
- Create trust among people and develop employability skills

TEXT BOOKS:

- 1. Ashrif Rizvi, "Effective Technical Communication", TataMcGrahill, 2011
- 2. Meenakshi Raman &Sangeeta Sharma, "Technical Communication", 3rd Edition, O U Press 2015

REFERENCES:

- 1. Pushpalatha & Sanjay Kumar, "Communication Skills", Oxford Univsesity Press
- 2. Barron's/Books on TOEFL/GRE/GMAT/CAT/IELTS DELTA/Cambridge University Press.2012.
- 3. Butterfield Jeff, "Soft Skills for Everyone", Cengage Publications, 2011.
- 4. Universities Press (India) Pvt Ltd., "Management Shapers Series", Himayatnagar, Hyderabad 2008.
- 5. John Hughes & Andrew Mallett, "Successful Presentations" Oxford.
- 6. Edgar Thorpe and Showick Thorpe, "Winning at Interviews" Pearson
- 7. Munish Bhargava, "Winning Resumes and Successful Interviews", McGraw Hill

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-I Sem L T P C 0 0 3 1.5

(19A04501P) INTEGRATED CIRCUITS AND APPLICATIONS LAB

LIST OF EXPERIMENTS

Course Objectives:

- To familiarize different Analog ICs.
- To implement linear and nonlinear application circuits by Op amp.
- To realize active filters using Op amp.
- To design of various multi-vibrator circuits using 555 timer application
- To design and Understand the working of mixed signal circuits like Analog to Digital Convertors, Digital to analog Convertors and Phase Locked Loop.
- To understand the working of a few application specific analog ICs and to design circuits based on these ICs.

Conduct any 12 experiments from the following list. Out of them any 4 experiments may be conducted using software tools.

Note: All the Hardware experiments may be performed using ICs 741, TL082, 555,565

Interpretation of data sheets (741, TL082, 555, 565)

1. Applications of Op-amp

Design and test the performance of the following circuits using Op-amp IC741/TL082

- a. Inverting amplifier
- b. Non-inverting amplifier
- c. Voltage follower
- d. Summer
- 2. Design and test the performance of practical differentiator and integrator circuits for various time constants. Plot the graphs.
- 3. Comparator circuits

To study zero crossing detectors, window detector and Schmitt trigger using Op-Amp.

- Signal converters
 Construct suitable circuits for Voltage to Current and Current to Voltage converters using Op-Amp.
- Active filters using Op-amp Design and test the performance of 2nd and 3rd order Butterworth LPF, HPF.
- 6. Active filters using Op-amp

Design and test the performance of 2nd and 3rd order Butterworth BPF and BSF.

7. Construct and verify the performance of

a. Logarithmic and antilog amplifiers b. Instrumentation amplifier

8. Precision rectifiers

Conduct experiments on half wave and full wave precision rectifiers and draw the output waveforms.

- 9. Design the monostable multivibrator circuit and verify their performance practically using Op-Amp and IC 555.
- 10. Design the astable multivibrator circuit and verify their performance practically using Op-Amp and IC 555.
- 11. Data converters

Construct and study performance of

- a. DAC circuits R-2R and ladder type.
- b. Successive approximation type ADC.
- 12. To study performance of PLL IC565
- 13. Design a DC power supply using 78XX/79XX andLM723, verify the same practically.

Equipment required for

Laboratory Software:

- i. Multisim/ Pspice/Equivalent Licensed simulation software tool
- ii. Computer Systems with required specifications

Hardware:

- 1. Regulated Power supplies
- 2. Analog/Digital Storage Oscilloscopes
- 3. Analog/Digital Function Generators
- 4. Digital Multimeters
- 5. Decade Résistance Boxes/Rheostats
- 6. Decade Capacitance Boxes
- 7. Ammeters (Analog or Digital)
- 8. Voltmeters (Analog or Digital)
- 9. Active & Passive Electronic Components
- 10.Bread Boards
- 11.Connecting Wires
- 12.CRO Probes

Course Outcomes:

- Understand the working of Op amp ICs & Application specific analog ICs.
- Analyze operational amplifier based circuits for linear and non-linear applications.

- Design Operational amplifiers for linear and nonlinear application, Multivibrator circuits using 555 & application specific ICs.
- Simulate all linear and nonlinear application based Op amp Circuits and circuits based on application specific ICs.
- Compare theoretical, practical & simulated results in integrated circuits.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-I Sem L T P C 0 0 3 1.5

(19A52601P) ENGLISH LANGUAGE SKILLS LAB

Course Objectives

- students will be exposed to a variety of self instructional, learner friendly modes of language learning
- Students will cultivate the habit of reading passages from the computer monitor. Thus providing them with the required facility to face computer based competitive exams like GRE, TOEFL, and GMAT etc.
- students will learn better pronunciation through stress, intonation and rhythm
- students will be trained to use language effectively to face interviews, group discussions, public speaking
- students will be initiated into greater use of the computer in resume preparation, report writing, format making etc

UNIT -I

- 1. Phonetics for listening comprehension of various accents 2
- 2. Formal Presentations using PPT slides without Graphic Elements
- 3. Paraphrasing

Learning Outcomes

At the end of the module, the learners will be able to

- Understand different accents spoken by native speakers of English
- Make formal structured presentations on general topics using PPT slides without graphical elements
- Paraphrase short academic texts using suitable strategies and conventions

UNIT- II

- 1. Debate 2 (Following Argument)
- 2. Listening to short speeches/ short stories for note-making and summarizing
- 3. E-mail Writing

Learning Outcomes

At the end of the module, the learners will be able to

- Participate in formal discussions and speak clearly on a specific topic using suitable discourse markers
- Make formal structured presentations on academic topics using ppt slides with relevant graphical elements
- Write formal emails in the standard format

UNIT- III

- 1. Listening for Discussions
- 2. Group Discussions
- 3. Writing Persuasive/argumentative essays on general topics

Learning Outcomes

At the end of the module, the learners will be able to

- Follow a discussion to identify the salient points
- Participate in group discussions using appropriate conventions and language strategies
- Produce logically coherent persuasive/argumentative essays

UNIT-IV

- 1. Reviewing film/ book
- 2. Group Discussions reaching consensus in Group Work
- 3. Resume Writing Cover Letter Applying for Internship

Learning Outcomes

At the end of the module, the learners will be able to

- Judge a film or book
- Express thoughts and ideas with acceptable accuracy and fluency with a view to reach consensus in group discussions
- Prepare a CV and write a cover letter to seek internship/ job

UNIT-V

- 1. Writing Project Reports
- 2. Editing Short Texts
- 3. Answering FAQs in Interviews

Learning Outcomes

At the end of the module, the learners will be able to

- Collaborate with a partner to make effective presentations
- Understand the structure and produce an effective project report.
- Edit short texts according to different needs of the work place.

Course Outcomes

- Remember and understand the different aspects of the English language proficiency with emphasis on LSRW skills
- Apply communication skills through various language learning activities
- Analyze the English speech sounds, stress, rhythm, intonation and syllable division for better listening and speaking comprehension.
- Evaluate and exhibit acceptable etiquette essential in social and professional settings
- Create awareness on mother tongue influence and neutralize it in order to improve fluency in spoken English.

SUGGESTED SOFTWARE:

- Walden Infotech English Language Communication Skills.
- iTell- Orell Digital Language Lab
- Digital Teacher
- LES(Learn English Select) by British council
- TOEFL & GRE (KAPLAN, AARCO & BARRONS, USA, Cracking GRE by CLIFFS)
- DELTA's key to the Next Generation TOEFL Test: Advanced Skills Practice.
- Lingua TOEFL CBT Insider, by Dreamtech
- English Pronunciation in Use (Elementary, Intermediate, Advanced) CUP
- Cambridge Advanced Learners' English Dictionary with CD.

REFERENCE BOOKS:

The software consisting of the prescribed topics elaborated above should be procured and used.

- 1. Meenakshi Raman & Sangeeta Sharma, "Technical Communication" O U Press 2009.
- 2. Barron's Books on TOEFL/GRE/GMAT/CAT/IELTS /DELTA/Cambridge University Press.2012.
- 3. Butterfield Jeff, "Soft Skills for Everyone", Cengage Publications, 2011.
- 4. "Practice Psychometric Tests": How to familiarize yourself with genuine recruitment tests, 2012.
- 5. David A McMurrey& Joanne Buckely "Handbook for Technical Writing" CENGAGE Learning 2008.

- 6. "A Textbook of English Phonetics for Indian Students", 2nd Edition, T.Balasubramanyam. (Macmillan), 2012.
- 7. "A Handbook for English Laboratories", E. Suresh Kumar, P. Sreehari, Foundation Books, 2011

Note: Links provided by APSHE on LSRW, grammar and vocabulary

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-I Sem L T P C 0 0 2 1

(19A04503P) DIGITAL COMMUNICATIONS LAB

Course Objectives

- To Develops skills for performance analysis of practical digital communication systems.
- To understand the fundamental concepts on TDM, Pulse modulations& digital modulation techniques.
- To evaluate the performance of PCM, DPCM and DM in a digital communication system.
- To learns how to use MATLAB software and hardware effectively and creatively to synthesis digital communication systems.

LIST OF EXPERIMENTS

Minimum of Twelve experiments to be conducted (any six from Part-A)

HARDWARE EXPERIMENTS (PART – A)

- 1. Generation of random data using linear feedback shift registers at a given data rate. Plot the random data.
- 2. Construct Time division multiplexing circuit to multiplex three users' data.
- 3. Verify the functionality of each block in Pulse code modulation system practically.
- 4. Find the processing gain in a Differential pulse code modulation circuit experimentally.
- 5. Verify the operation of Delta modulation and demodulation.
- 6. Design and verify modulated and demodulated circuit for Frequency shift keying.
- 7. Construct a modulated and demodulated circuit for Differential phase shift keying.
- 8. Design and verify working principle of QPSK modulation and demodulation with suitable setup.

SOFTWARE EXPERIMENTS (PART-B) Modeling of Digital Communications using MATLAB

- 1. Study Sampling Theorem and verify the effect of under sampling and oversampling while retrieving the original signal.
- 2. Understand functioning of each block in Pulse code modulation circuit and verify through simulation.
- 3. Write a program on Differential pulse code modulation and demodulation.
- 4. Write a program on Frequency shift keying modulation schemes for given two carrier frequencies, determine the bit error probability.

- 5. Write a program and verify QPSK modulation and demodulation, determine the bit error probability.
- 6. Write a program and verify Differential phase shift keying modulation scheme is a noncoherent modulation scheme, determine the bit error probability is inferior to that of QPSK.

EQUIPMENT REQUIRED FOR LABORATORIES:

- 1. RPS 0-30V
- 2. CROs 0 20 MHz.
- 3. Function Generators 0 1 MHz
- 4. RF Generators 0 1000 MHz.
- 5. Multimeters
- 6. Required Electronic Components (Active and Passive) which include ICs as well.
- 7. Arbitrary Wave form generators/ PNS generators 2 Nos. (To generate digital data at required data rates)
- 8. Licensed MATLAB software with required toolboxes.

Course Outcomes

- Understand real time behavior of different digital modulation schemes and technically visualize spectra of different digital modulation schemes.
- Design and implement different modulation and demodulation techniques.
- Analyze digital modulation & demodulation techniques.
- Simulate all digital modulation and demodulation techniques in MATLAB.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-I Sem L T P C 3 0 0 0

(19A99601) MANDATORY COURSE: RESEARCH METHODOLOGY

Course Objectives :

The objective of this course is

- To understand the basic concepts of research and research problem
- To make the students learn about various types of data collection and sampling design
- To enable them to know the method of statistical evaluation
- To make the students understand various testing tools in research
- To make the student learn how to write a research report
- To create awareness on ethical issues n research

Syllabus UNIT- I

Meaning of Research – Objectives of Research – Types of Research – Research Approaches – Guidelines for Selecting and Defining a Research Problem – Research Design – Concepts related to Research Design – Basic Principles of Experimental Design.

Learning Outcomes:-

After completion of this unit student will

- Understand the concept of research and its process
- Explain various types of research
- Know the steps involved in research design
- Understand the different research approaches

UNIT- II

Sampling Design – steps in Sampling Design –Characteristics of a Good Sample Design – Random Sampling Design. Measurement and Scaling Techniques-Errors in Measurement – Tests of Sound Measurement – Scaling and Scale Construction Techniques – Time Series Analysis – Interpolation and Extrapolation. Data Collection Methods – Primary Data – Secondary data – Questionnaire Survey and Interviews.

Learning Outcomes:-

After completion of this unit student will

- Understand the concept of sampling and sampling design
- Explain various techniques in measurement and scaling
- Learn various methods of data collection
- Design survey questionnaires for different kinds of research
- Analyze the questionnaires

UNIT- III

Correlation and Regression Analysis – Method of Least Squares – Regression vs Correlation – Correlation vs Determination – Types of Correlations and Their Applications

Learning Outcomes:-

After completion of this unit student will

- Know the association of two variables
- Understand the importance of correlation and regression
- Compare and contrast correlation and regression
- Learn various types of correlation
- Apply the knowledge of C&R Analysis to get the results

UNIT- IV

Statistical Inference: Tests of Hypothesis – Parametric vs Non-parametric Tests – Hypothesis Testing Procedure – Sampling Theory – Sampling Distribution – Chi-square Test – Analysis of variance and Co-variance – Multivariate Analysis

Learning Outcomes:-

After completion of this unit student will

- Know the statistical inference
- Understand the hypothesis testing procedure
- Compare and contrast Parametric and Non-parametric Tests
- Understand the use of chi-square test in investigating the distribution of categorical variables
- Analyze the significance of variance and covariance

UNIT- V

Report Writing and Professional Ethics: Interpretation of Data – Report Writing – Layout of a Research Paper – Techniques of Interpretation- Making Scientific Presentations in Conferences and Seminars – Professional Ethics in Research.

Learning Outcomes:-

After completion of this unit student will

- Learn about report writing
- Understand how to write research paper
- Explain various techniques of interpretation
- Understand the importance of professional ethics in research
- Design a scientific paper to present in the conferences/seminars

Course Outcomes:

At the end of the course, students will be able to

- Understand basic concepts and its methodologies
- Demonstrate the knowledge of research processes
- Read. comprehend and explain research articles in their academic discipline
- Analyze various types of testing tools used in research
- Design a research paper without any ethical issues

TEXT BOOKS:

- 1. C.R.Kothari, "Research Methodology:Methods and Techniques",2nd edition, New Age International Publishers.
- 2. A Step by Step Guide for Beginners, "Research Methodology": Ranjit Kumar, Sage Publications

REFERENCES:

- P.Narayana Reddy and G.V.R.K.Acharyulu, "Research Methodology and Statistical Tools", 1st Edition, Excel Books, New Delhi.
- 2. Donald R. "Business Research Methods", Cooper & Pamela S Schindler, 9th edition.
- 3. S C Gupta, "Fundamentals of Statistics", 7th edition Himalaya Publications

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-II Sem L T P C 3 0 0 3

(19A04601T) MICROPROCESSORS AND MICROCONTROLLERS

Course Objectives:

- To introduce fundamental architectural concepts of microprocessors and microcontrollers.
- To impart knowledge on addressing modes and instruction set of 8086 and 8051.
- To introduce assembly language programming concepts.
- To explain memory and I/O interfacing with 8086 and 8051.
- To introduce16 bit and 32 bit microcontrollers.

UNIT- I

Introduction to 8085 and 8086 Microprocessors: 8085 Microprocessor Architecture, Pin Diagram, Flag Register, Interrupts of 8085. Register Organisation of 8086, Architecture, Pin Diagram, Flag Register, Physical Memory concept, Memory addressing in 8086, Stack organization of 8086, Addressing Modes in 8086, Interrupt structure of 8086.

Learning Outcomes:-

After completion of this unit student will

- Summarize features of a microprocessor (L2)
- Explain about ISR and interrupt structure of 8086 (L2)
- Distinguish between Intel 8085& 8086 microprocessors (L5)

UNIT- II

8086 Microprocessor Instruction Set and Addressing Modes, Instruction Set of 8086, Assembly Language Programming, Simple programs, Assembler Directives, Procedures and Macros, String Instructions.

Learning Outcomes:-

After completion of this unit student will

- Understand instruction set of 8086 microprocessor (L1)
- Explain addressing modes of 8086 (L2)
- Develop assembly language programs for various problems (L2)

UNIT- III

Memory interacting with 8086 and Peripheral Devices, Interfacing SRAMs, DRAMs and EPROMs to 8086, Programmable Peripheral Interface 8255, Programmable Interval Timer 8253, Programmable Interrupt Controller 8259, Programmable Communication Interface 8251 USART, DMA Controller 8257.

Learning Outcomes:-

After completion of this unit student will

- Demonstrate memory &I/O interfacing with 8086 (L2)
- Describe interfacing of 8086 with peripheral devices (L2)

UNIT- IV

Intel 8051 Microcontroller, Microprocessor vs Microcontroller, 8051 Microcontroller Architecture, Microcontroller 8051 pin diagram, 8051 Ports, Internal and External Memory, Counters and Timers, Serial Communication in 8051, Interrupts in 8051, Addressing Modes, Data Transfer Instructions, Data and Bit-Manipulation Instructions, Arithmetic Instructions, simple programs.

Learning Outcomes:-

After completion of this unit student will

- Describe architecture and features of Intel 8051 microcontroller (L2)
- Develop assembly language programs to perform various operations using 8051 (L2)
- Distinguish between microprocessor and a microcontroller (L5)

UNIT- V

ARM Architectures and Processors: What is ARM Architecture, ARM Processor Families, ARM Cortex-M Series, Cortex-M0+ Processor Overview, Cortex-M0+ Block Diagram, Registers, Memory Map, Bit-band Operations, Endianness, ARM Cortex-M0+ Processor Instruction Set – ARM and Thumb Instruction Set.

Learning Outcomes:-

After completion of this unit student will

- Explain architecture and addressing modes of ARM Cortex M0+. (L2)
- Explain the Assembly instruction set of ARM Cortex M0+. (L2)

Course Outcomes:

- Understand instruction set of 8086 microprocessor and ARM architecture.
- Explain addressing modes of 8086, develop assembly language programs for various problems, describe interfacing of 8086 with peripheral devices, architecture and addressing modes of ARM Cortex M0+, assembly instruction set of ARM Cortex M0+.
- Distinguish between microprocessor and microcontroller, 8085& 8086 microprocessors, design applications using microcontrollers.

Text Books:

- K M Bhurchandi, A K Ray, "Advanced Microprocessors and Peripherals", 3rd edition, McGraw Hill Education, 2017.
- 2. Raj Kamal, "Microcontrollers: Architecture, Programming, Interfacing and System Design", 2nd edition, Pearson, 2012.
- 3. Alexander G. Dean "Embedded Systems Fundamentals on Arm Cortex-M based Microcontrollers": APractical Approach

References:

- 1. Ramesh S Gaonkar, "Microprocessor Architecture Programming and Applications with the 8085", 6th edition, Penram International Publishing, 2013.
- 2. Kenneth J. Ayala, "the 8051 Microcontroller", 3rd edition, Cengage Learning, 2004.
- 3. Andrew N. Sloss, Dominic Symes, Chris Wright, ARM System Developer's Guide: "Designing and Optimizing System Software", Elsevier, 2004.
- John H. Davies, Newness, "MSP 430 Microcontroller Basics", Elsevier Publications, 2008.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-II Sem L T P C 3 0 0 3

(19A04602T) DIGITAL SIGNAL PROCESSING

Course Objectives:

- To provide background and fundamental material for the analysis and processing of digital signals.
- To familiarize the relationships between continuous-time and discrete time signals and systems.
- To study fundamentals of time, frequency and Z-plane analysis and to discuss the interrelationships of these analytic method.
- To study the designs and structures of digital (IIR and FIR) filters from analysis to synthesis for a given specifications.
- To introduce a few real-world signal processing applications.
- To acquaint with DSP processor.

UNIT- I:

Discrete Fourier Transform: Discrete Fourier series, Properties of Discrete Fourier series, Discrete Fourier Transform (DFT), The DFT as a linear transformation, Relationship of the DFT to other transforms, Properties of DFT.

Fast Fourier Transforms: Efficient computation of DFT algorithms - Radix 2-Decimation-in-Time & Decimation-in-Frequency algorithms, Inverse FFT, Illustrative problems.

Learning Outcomes:-

After completion of this unit student will

- Understand the concept of DFT and its properties.(L1)
- Find N-Point DFT/FFT for a given signal/sequence.(L2)

UNIT-II:

IIR Digital Filters: Review of analog filter design, Frequency transformation in the analog and digital domains, Design of IIR filters from Analog filters – Approximation of derivatives, Impulse invariance, Bilinear transformation, Design of Butterworth, Chebyshev filters, Illustrative problems.

Realization of IIR Systems: Structures for IIR systems–Direct form I& Direct form II, Transposed, Cascade form, Parallel form and Lattice structures, Signal flow graphs.

Learning Outcomes:-

After completion of this unit student will

- Understands signal flow graph and block diagram representations of difference equations that realize digital filters(L1)
- Realization of different structures for IIR filters(L2)
- Design of IIR filters using different techniques. (L4)

UNIT-III:

FIR Digital Filters: Linear phase FIR filter, characteristic response, location of zeros, Design of FIR filter using Windowing Techniques - Rectangular, Hanning, Hamming, Kaiser, Bartlett, Blackman, Design of FIR filter by Frequency sampling technique, Illustrative problems. **Realization of FIR Systems:** Structures for FIR systems - Direct form, Cascade form and Lattice structures. Comparison of FIR and IIR filters.

Learning Outcomes:-

After completion of this unit student will

- Understand the concept of FIR filter(L1)
- Realization of different structures for FIR filters(L2)
- FIR filter design based on windowing methods.(L4)
- Compare FIR and IIR filters (L5)

UNIT -IV:

Architectures for Programmable DSP Devices: Basic Architectural features, DSPComputational Building Blocks, Bus Architecture and Memory, Data Addressing Capabilities, Address Generation Unit, Programmability and Program Execution, Speed Issues.

Learning Outcomes:-

After completion of this unit student will

- Recognize the fundamentals of fixed and floating point architectures of various DSPs.(L1)
- Learn the architecture details and instruction sets of fixed and floating point DSPs.(L1)
- Illustrate the control instructions, interrupts, and pipeline operations.(L2)

UNIT-V:

Programmable Digital Signal Processors: Introduction, Commercial Digital signalprocessingDevices, Architecture of TMS320C54XX DSPs, Data Addressing modes of TMS320C54XX Processors, Memory space of TMS320C54XX Processors, Program Control, TMS320C54XX instructions and Programming, On-Chip Peripherals, Interrupts of TMS320C54XX processors, Pipeline Operation of TMS320C54XX Processors.

Learning Outcomes:-

After completion of this unit student will

- Illustrate the features of on-chip peripheral devices and its interfacing along with its programming details.(L2)
- Analyze and implement the signal processing algorithms in DSPs. (L3)

Course Outcomes

- Understand the basic concepts of IIR and FIR filters, DSP building blocks to achieve high speed in DSP processor, DSP TMS320C54XX architecture and instructions.
- Compute the fast Fourier transforms and find the relationship with other transforms. Realization of digital filter structures.
- Design of FIR and IIR digital filters.
- Compare FIR and IIR filters.

TEXT BOOKS:

- 1. John G. Proakis, Dimitris G. Manolakis, "Digital signal processing, principles, Algorithms and applications," Pearson Education/PHI, 4th ed., 2007.
- 2. Avtar Singh and S. Srinivasan, "Digital Signal Processing," Thomson Publications, 2004.

REFERENCES:

- 1. Sanjit K Mitra, "Digital signal processing, A computer base approach," Tata McGraw Hill, 3rd edition, 2009.
- 2. A.V.Oppenheim and R.W. Schaffer, & J R Buck, "Discrete Time Signal Processing," 2nd, Pearson Education, 2012.
- 3. B. P. Lathi, "Principles of Signal Processing and Linear Systems," Oxford Univ. Press, 2011.
- 4. B. Venkata Ramani and M.Bhaskar, "Digital Signal Processors, Architecture, Programming and Applications," TMH, 2004.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-II Sem L T P C 3 0 0 3

(19A04603) DIGITAL SYSTEM DESIGN THROUGH VHDL

Course Objectives:

- Learn and understand the architectures of Field-programmable Gate Arrays.
- Translate a software application into hardware logic for FPGA architectures.
- Design synthesizable systems based on industry-standard coding methods.
- Build testbenches and create data models to verify bit-true accurate designs.
- Acquire the knowledge about Design and modelling of Parwan CPU, vending machine, washing machine, etc.

UNIT-I

Introduction and Field-Programmable Gate Arrays: Hardware Description Languages, FPGA Boards and Software Tools, Transistor as a Switch, Logic Gates from Switches, FPGA Building Blocks, Layout of the Xilinx Artix-7 XC7A35T FPGA, Resources of FPGA, Clock Management, The XADC Block, High-Speed Serial I/O Transceivers, Peripheral Component Interconnect Express Interface, FPGA-Based Digital System Design Philosophy, Advantages and Disadvantages of FPGAs, Usage Areas of FPGAs, Introduction to VHDL, VHDL Fundamentals, Entity and Architecture Representations, Dataflow Modeling, Behavioral Modeling, Timing and Delays in Modeling, Hierarchical Structural Representation, Testbench Formation in VHDL, Structure of a VHDL Testbench File, Displaying Test Results.

Learning Outcomes:-

After completion of this unit student will

- Understand the architecture of FPGA devices (L2)
- Know the software tools used in digital design (L1)
- Understand the VHDL design styles to design digital systems (L2)

UNIT-II:

VHDL Data Types and Operators: Data Types in VHDL, Signal and Variable Data Types, Data Values, Naming a Signal or Variable, Defining Constants, Defining Arrays, Operators in VHDL, Application on Data Types and Operators, FPGA Building Blocks Used in Data Types and Operators, Implementation Details of Vector and Arithmetic Operations.

Learning Outcomes:-

After completion of this unit student will

- Know various data types used in VHDL language (L2)
- Understand the VHDL operators and apply them in digital design (L3)
- Implement various arithmetic and logical operations in digital design (L3)

UNIT-III:

Combinational Circuits: Logic Gates, Combinational Circuit Analysis, Logic Function Formation between Input and Output, Boolean Algebra, Gate-Level Minimization,Combinational Circuit Implementation, Truth Table-Based Implementation, Implementing Combinational Circuits, Combinational Circuit Design,

Combinational Circuit Blocks: Adders in VHDL, Comparators in VHDL, Decoders in VHDL, Encoders in VHDL, Multiplexers in VHDL, Parity Generators and Checkers in VHDL, Applications on Combinational Circuit Blocks, Sample Designs, Home Alarm System, Digital Safe System, Car Park Occupied Slot Counting System, Applications on Combinational Circuits, Implementing the Home Alarm System, Implementing the Digital Safe System, Implementing the Car Park Occupied Slot Counting System, FPGA Building Blocks Used in Combinational Circuits,

Data Storage Elements: Latches in VHDL, Flip-Flops in VHDL, Register, Memory, Read-Only Memory, ROM in VHDL, ROM Formation Using IP Blocks, Random Access Memory, Application on Data Storage Elements, FPGA Building Blocks Used in Data Storage Elements.

Learning Outcomes:-

After completion of this unit student will

- Design and analyze various combinational logic circuits (L4)
- Use VHDL in design of combinational logic circuits to analyze the behaviour (L4)
- Implement various memory and data storage elements using VHDL (L4)

UNIT-IV:

Sequential Circuits: Sequential Circuit Analysis, State Table, State Diagram, State Representation in VHDL, Timing in Sequential Circuits, Synchronous Operation, Asynchronous Operation, Shift Register as a Sequential Circuit, Shift Registers in VHDL, Multiplication and Division Using Shift Registers, Counter as a Sequential Circuit, Synchronous Counter, Asynchronous Counter, Counters in VHDL, Frequency Division Using Counters, Sequential Circuit Design, Applications on Sequential Circuits

Learning Outcomes:-

After completion of this unit student will

- Design sequential logic circuits (L4)
- Use VHDL in design of sequential logic circuits to analyze the behavior (L4)
- Create VHDL structural models to design sequential logic circuits (L5)

UNIT-V:

CPU Modeling and Design: Defining a Comprehensive Example, ParwanCPU Memory Organization of Parwan, Instruction Set, Instruction Format, Programming in Parwan Assembly, Behavioral Description of Parwan, Timing and Clocking, Packages, Interface Description of Parwan, Parwan Behavioral Architecture, Parwan Bussing Structure, Interconnection of Components, Global View of Parwan Components, Instruction Execution

Advanced Applications: Vending Machine, Digital Clock, Moving Wave via LEDs, Translator, Air Freshener Dispenser, Obstacle-Avoiding Tank, Intelligent Washing Machine, Non-Touch Paper Towel Dispenser, Car Parking Sensor System, Digital Table Tennis Game

Learning Outcomes:-

After completion of this unit student will

- Understand the design of Parwan CPU (L5)
- Develop VHDL models for various advanced digital applications (L5)
- Use VHDL in design of digital design systems like washing machines, car parking systems (L5)

Course Outcomes:

- Understand the architecture of FPGAs, tools used in modelling of digital design and modelling styles in VHDL.
- Learn the IEEE Standard 1076 Hardware Description Language (VHDL).
- Analyze and design basic digital circuits with combinatorial and sequential logic circuits using VHDL.
- Model complex digital systems at several levels of abstractions, behavioural, structural.
- Design complex digital CPU, vending machine and washing machines etc and analyze the case studies.

Text Books:

- 1. CemUnsalan, Bora Tar "Digital System Design with FPGA Implementation Using Verilog and VHDL" McGraw-Hill Education, 2017
- ZainalabedinNavabi "VHDL: Analysis and Modeling of Digital Systems" VHDL: Analysis and Modeling of Digital Systems, Z. Navabi, McGraw Hill International Ed. 1998.

References:

- 1. J. Bhaskar "A VHDL Primer", Pearson Education India, 3rd edition, 2015
- 2. Stephen Brown and ZvonkoVranesic "Fundamentals of digital logic design with VHDL"Tata McGraw Hill, 2nd edition, 2009.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE) – III-II Sem L T P C 3 0 0 3

(19A04605a) CELLULAR AND MOBILE COMMUNICATIONS PROFESSIONAL ELECTIVE-II

Course Objectives:

- To explain cell coverage for signal and traffic, diversity techniques and mobile antennas by the use of Engineering Mathematics.
- To present impairments due to multipath fading channel, fundamental techniques to overcome different fading effects, frequency management, Channel assignment and types of handoff.
- To teach concepts and solve problems on mobile antennas and cellular systems.
- To teach Co-channel and Non Co-channel interferences, different Hand-offs and dropped call rates.
- To describe performance evaluation of dropped call rate and false alarm rate.

UNIT –I

Introduction to Cellular Mobile Radio Systems: Limitations of Conventional Mobile Telephone Systems, Basic Cellular Mobile System, Uniqueness of Mobile Radio Environment, Mobile Fading Characteristics, Operations of Cellular Systems, Evolution of Cellular Systems. **Fundamentals of Cellular Radio System Design**: Concept of Frequency Reuse, Co-Channel Interference, Co-Channel Interference Reduction Factor, Desired C/I from a Normal Case in a Omni Directional Antenna System, System Capacity, Trunking and Grade of Service, Improving Coverage and Capacity in Cellular Systems- CellSplitting, Sectoring, Microcell Zone Concept.

Learning Outcomes:-

After completion of this unit student will

- Describe basic concepts of Cellular system (L2)
- Examine cellular concepts to evaluate the signal reception performance in a cellular network (L3)

UNIT –II

Cell Coverage for Signal and Traffic: Signal Reflections in Flat and Hilly Terrain, Effect of Human Made Structures, Phase Difference between Direct and Reflected Paths, Constant Standard Deviation, Straight Line Path Loss Slope, General Formula for Mobile Propagation

Over Water and Flat Open Area, Near and Long Distance Propagation, Path Loss from a Point to Point Prediction Model in Different Conditions, Merits of Lee Model.

Cell Site and Mobile Antennas: Space Diversity Antennas, Umbrella Pattern Antennas, Minimum Separation of Cell Site Antennas, Mobile Antennas.

Learning Outcomes:-

After completion of this unit student will

- Illustrate mathematical models in mobile radio propagation mechanisms (L2)
- Evaluate different antenna systems based on their performance (L3)

UNIT-III

Co-Channel Interference Reduction: Measurement of Real Time Co-Channel Interference, Design of Omni directional and directional Antenna System, Antenna Parameters and Their Effects, Diversity Techniques-Space Diversity, Polarization Diversity, Frequency Diversity, Time Diversity.

Non-Co-Channel Interference: Adjacent Channel Interference, Near End Far End Interference, Cross Talk, Effects on Coverageand Interference by Power Decrease, Antenna Height Decrease, Effects of Cell Site Components.

Learning Outcomes:-

After completion of this unit student will

- Design Omni directional and directional Antenna System to measure the C/I parameter (L4)
- Analyze different diversity techniques (L3)
- Evaluate interference and reception performance in cellular network (L3)

UNIT -IV

Frequency Management and Channel Assignment: Numbering and Grouping, Setup Access and Paging Channels, Channel Assignments to Cell Site and Mobile Units, Channel Sharing and Borrowing, Sectorization, Overlaid Cells, Non Fixed Channel Assignment.

Learning Outcomes:-

After completion of this unit student will

- Explain frequency management and channel assignment (L2)
- Describe sectorization of cells and non-fixed channel assignment (L2)

UNIT –V

Handoffs and Dropped Calls: Handoff Initiation, Types of Handoff, Delaying Handoff, Advantages of Handoff, Power difference Handoff, Forced Handoff, Mobile Assisted and Soft Handoffs, Intersystem Handoff, Introduction to Dropped Call Rates and their Evaluation.

System Evaluation: Performance Evaluation, Blockage, Dropped-call rate, Signaling Evaluation- False Alarm Rate, Word error rate consideration and calculations, Measurement of averaged received signal level and level crossings.

Learning Outcomes:-

After completion of this unit student will

- Understand concept of handoff (L1)
- Evaluate performance of handoff and its mathematical calculation (L3)
- Distinguish various handoff techniques (L5)

Course Outcomes:

- Know about cell coverage for signal and traffic, diversity techniques and mobile antennas by the use of Engineering Mathematics.
- Explainimpairments due to multipath fading channel, fundamental techniques to overcome different fading effects, frequency management, Channel assignment and types of handoff.
- Apply concepts to solve problems on mobile antennas and cellular systems, evaluate performance of dropped call rate and false alarm rate, analyze Co-channel and Non Co-channel interferences, different Hand-offs and dropped call rates.
- Compare different handoffs.

Text Books:

- 1. W.C.Y. Lee, "Mobile Cellular Telecommunications", McGraw Hill, 2nd edition, 1989.
- 2. Theodore. S. Rapport, "Wireless Communications", Pearson Education, 2nd edition, 2002.

References:

- 1. W.C.Y Lee, "Mobile Communications Engineering-Theory and Applications", 2nd Edition, McGraw Hill, 2014.
- 2. Gordon L. Stuber, "Principles of Mobile Communications", Springer International", 2nd edition, 2001.
- 3. Simon Haykin, Michael Moher, "Modern Wireless Communications", Pearson Education, 2005.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE) – III-II Sem L T P C 3 0 0 3

(19A04605b) SENSORS AND ACTUATORS

Course Objectives:

- To understand basics of sensors, actuators and their operating principle.
- To explain about sensors and its importance in the real world and also how to fabricate some of those sensors.
- To provide in-depth understanding on characteristic parameters to evaluate sensor performance.
- To explain working of various types of thermal, radiation, smart sensors and actuators.
- To provide information about interfacing and characterization of different sensors.

UNIT I:

Sensors / Transducers: Principles, Classification, Parameters, Characteristics, Environmental Parameters (EP), Characterization. Mechanical and Electromechanical Sensors: Introduction, Resistive Potentiometer, Strain Gauge, Resistance Strain Gauge, Semiconductor Strain Gauges, Inductive Sensors- Sensitivity and Linearity of the Sensor, Types- Capacitive Sensors, Electrostatic Transducer, Force/Stress Sensors using Quartz Resonators, Ultrasonic Sensors.

Learning Outcomes:-

After completion of this unit student will

- Understand the basics principles of different types of sensors and transducers (L1)
- Apply the in-depth knowledge on different sensors and expose this to the real applications (L2)

UNIT II:

Thermal Sensors: Introduction, Gas thermometric Sensors, Thermal Expansion Type Thermometric Sensors, Acoustic Temperature Sensor, Dielectric Constant and Refractive Index Thermo-sensors, Helium Low Temperature Thermometer, Nuclear Thermometer, Magnetic Thermometer, Resistance Change Type Thermometric Sensors, Thermo-EMF Sensors, Junction Semiconductor Types, Thermal Radiation Sensors, Quartz Crystal Thermo-electric Sensors, NQR Thermometry, Spectroscopic Thermometry, Noise Thermometry, Heat Flux Sensors.

Magnetic Sensors: Introduction, Sensors and the Principles Behind, Magneto-resistive Sensors, Anisotropic Magneto-resistive Sensing, Semiconductor Magneto-resistors, Hall Effect and Sensors, Inductance and Eddy Current Sensors, Angular/Rotary Movement Transducers,

Synchros, Synchroresolvers, Eddy Current Sensors, Electromagnetic Flow meter, Switching Magnetic Sensors, SQUID Sensors.

Learning Outcomes:-

After completion of this unit student will

- Explain the characteristics and working of various types of thermal and magnetic sensors (L1).
- Design and develop sensors using thermometer, thermocouple, magneto-resistive (L4).

UNIT III:

Radiation Sensors: Introduction – Basic Characteristics – Types of Photo-sensistors/Photo detectors– X-ray and Nuclear Radiation Sensors– Fiber Optic Sensors. Electro Analytical Sensors: Introduction – The Electrochemical Cell – The Cell Potential – Standard Hydrogen Electrode (SHE) – Liquid Junction and Other Potentials – Polarization – Concentration Polarization– Reference Electrodes – Sensor Electrodes – Electro ceramics in Gas Media .

Learning Outcomes:-

After completion of this unit student will

- Understand the basic operation of radiation sensors including optical types (L1).
- Describe the construction and characteristics of radiation sensors and its application to real world (L1).

UNIT IV:

Smart Sensors: Introduction, Primary Sensors, Excitation, Amplification, Filters, Converters, Compensation, Information Coding/Processing, Data Communication, Standards for Smart Sensor Interface, the Automation. Sensors Applications: Introduction, On-board Automobile Sensors (Automotive Sensors), Home Appliance Sensors, Aerospace Sensors, Sensors for Manufacturing, Sensors for environmental Monitoring.

Learning Outcomes:-

After completion of this unit student will

- Explain the operation of smart sensors including amplification, filters and converters (L1).
- Describe the operating principles also explain the different applications on intelligent sensors (L1).

UNIT V:

Actuators: Pneumatic and Hydraulic Actuation Systems- Actuation systems, Pneumatic and hydraulic systems, Directional Control valves, Pressure control valves, Cylinders, Servo and proportional control valves, Process control valves, Rotary actuators, Mechanical Actuation Systems Types of motion, Kinematic chains, Cams, Gears, Ratchet and pawl, Belt and chain drives, Bearings, Mechanical aspects of motor selection, Electrical Actuation Systems, Electrical systems, Mechanical switches, Solid-state switches, Solenoids, D.C. Motors, A.C. Motors, Stepper motors.

Learning Outcomes:-

After completion of this unit student will

- Explain the operation of actuators such as pneumatic and hydraulic (L1).
- Analyse the appropriate actuator for an application with interfacing circuits (L3).

Course Outcomes:

After completion of the course, student will be able to

- Describe/Understand the operation of commonly employed sensors and actuators.
- Apply the in-depth knowledge on different sensors to evaluate and expose this to the real applications
- Analyze the appropriate actuator for an application with interfacing circuits (L3).
- Design and construct the appropriate interface circuits for the sensors and actuators.

TEXT BOOKS:

- 1. D. Patranabis, "Sensors and Transducers", PHI Learning Private Limited.
- 2. W. Bolton, "Mechatronics", Pearson Education Limited.

REFERENCE BOOKS:

1. Patranabis, "Sensors and Actuators", 2nd Edition, PHI, 2013.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-II Sem L T P C 3 0 0 3

(19A04605c) DIGITAL SWITCHING AND MULTIPLEXING

PROFESSIONAL ELECTIVE-II

Course Objectives:

- To understand the knowledge of telecommunication networks and its different services.
- To analyze and evaluate fundamental telecommunication traffic models, packet switching services and statistical time division multiplexing.
- To describe the characteristics of the telephone systems and make use of the parameters in designing telephone switches.
- To describe the performance of a digital telephone switch.
- To evaluate integrated broadband access using telecommunications systems and SONET multiplexing.

UNIT -I

Introduction – Evolution of Telecommunication, Basics of switching system, step-by-step switching, Design considerations.

Principles of Crossbar switching, electronic space division switching, stored program control, software architecture, switching functions.

Learning Outcomes:-

After completion of this unit student will

- Understand the Historical development of telecommunication networks and switching systems (L1).
- Explain telephone transmission systems. Evaluation of PSTN and Electromechanical switching system (L2).

UNIT –II

Digital transmission, Frequency Division multiplexing, Time Division multiplexing, Statistical Division Multiplexing, switching hierarchy, Synchronous digital hierarchy both USA and European standards.

Message switching, circuit switching & packet switching, space division switching, Time division switching. Two dimensional switching, grade of service, non-blocking, digital cross connect, concentrators, expanders and distributors, two stage networks, three stage networks, n-stage networks.

Learning Outcomes:-

After completion of this unit student will

- Evaluate the various stages of networks (L3).
- Analyse the performance of a digital transmission and different multiplexing mechanisms (L3).
- Differentiate the different switching techniques(L5).

UNIT –III

Time Division Switching – Time Division space switching, Time division time switching, and time multiplexed space switching, Time multiplexed time switching, combination switching, three stage combination switching, n-stage combination switching, signaling techniques. Telecommunication Traffic – Units of Traffic, Network traffic load and parameters, Grade of service and Blocking Probability, traffic measurement, Mathematical model, Incoming traffic and service time characteristics, Blocking models and loss estimates, delay systems.

Learning Outcomes:-

After completion of this unit student will

- Understand the concepts of time division switching(L1).
- Evaluate the parameters of grade of service and blocking probabilities (L3).

UNIT -IV

Digital Subscriber access – ISDN, High data rate digital subscriber loops, Digital Loop carrier systems, fiber in the loop, voice band modems, digital satellite services, Broadband switching systems.

Network synchronization control and management, timing, timing inaccuracies, network synchronization, network control and management.

Learning Outcomes:-

After completion of this unit student will

- Explain the network synchronization, network control and management (L2).
- Evaluate integrated broadband access using telecommunications systems (L3).

UNIT V-:

SONET/SDH – SONET multiplexing overview, frame formats operation, administration and maintenance, frequency justification and payload framing, virtual tributes, DS3 payload mapping, E4 payload mapping, SONET optical standards, SONET rings & networks.

Learning Outcomes:-

After completion of this unit student will

- Understand the concept of SONET in optical networks(L1).
- Explain the payload mapping (L2).

Course Outcomes:

- Understand the characteristics of the telephone systems, network synchronization and management.
- Explain telephone transmission systems, evaluate PSTN and electromechanical switching system.
- Evaluate fiber based wide area networks, model and estimate the telecom traffic.
- Design and test telecom switching systems.

TEXT BOOKS:

- 1. T Viswanathan, "Telecommunication Switching Systems and Networks", PHI, 1997.
- 2. John C Bellamy, "Digital Telephony", 3rdEdition, Wiley-India, 1999.

REFERENCE BOOKS:

- 1. J E Flood, "Telecommunications Switching, Traffic and Networks" Pearson, 2004.
- 2. Gokhale, "Introduction to Telecommunications", 2ndEdition, Cengage Learning, 2005.
- 3. Robert G Winch, "Telecommunication Transmission Systems", 2nd Edition, Tata McGraw Hill, 2004.

(19A04605d) ELECTRONIC MEASUREMENTS AND INSTRUMENTATION PROFESSIONAL ELECTIVE-II

Course Objectives:

- To know various measuring systems and their functionality.
- To understandvarious measurement metrics for performance analysis.
- To explain principles of operation and working of different electronic instruments.
- To familiarize the characteristics, operations, calibrations and applications of the different oscilloscopes.
- To provide exposure to different sensors and transducers.

UNIT-I

Performance characteristics of Instruments: Static characteristics, Accuracy, Precision, Resolution, Sensitivity, static and dynamic calibration, Errors in Measurement, and their statistical analysis, dynamic characteristics-speed of Response, fidelity, Lag and dynamic error. DC ammeters, DC voltmeters, AC voltmeters Thermocouple type RF ammeter, ohm meters, series type, shunt type, multimeter for voltage, current and resistance measurements, illustrative problems.

Learning Outcomes:-

After completion of this unit student will

- Define different terms used for characterizing the performance of an instrument/measurement system (L1)
- Understand the principle of operation of various meters (L1)
- Problem solving related to dc and ac meters (L2)
- Design multirange ammeters and voltmeters (L4)

UNIT-II

Oscilloscopes: Standard specifications of CRO,CRT features, vertical and horizontal amplifiers, horizontal and vertical deflection systems, sweep trigger pulse, delay line, sync selector circuits, probes for CRO – active, passive and attenuator type, dual trace/beam CRO, Principles of

sampling oscilloscope, storage oscilloscope, and digital storage oscilloscope, Digital frequency counters, time & Period measurements.

Learning Outcomes:-

After completion of this unit student will

- Understand the basic blocks of analog and digital CROs (L1)
- Measure amplitude and frequency utilizing oscilloscopes (L2)
- Analyze the functioning of various types of probes (L3)
- Differentiate systems and operations of digital and analog oscilloscopes (L4)

UNIT-III

Signal Generators and Analyzers: Fixed and variable frequency AF oscillators, function generators, pulse, random noise, sweep, and arbitrary waveform generators, their standards, specifications and principles of working (Block diagram approach); Wave analyzers, Harmonic distortion analyzers, Spectrum analyzers, and Logic analyzers.

Learning Outcomes:-

After completion of this unit student will

- Understand the basic principle of various signal generators and analyzers (L1)
- Describe characteristics of signal generators and analyzers (L2)
- Distinguish principles of working of wave analyzer and spectrum analyzer (L4)

UNIT -IV

Bridges: Wheatstone bridge, Wein Bridge, errors and precautions in using bridges, AC bridges: Measurement of inductance-Maxwell's bridge, Anderson Bridge. Measurement of capacitance-Schearing Bridge, Kelvin Bridge, Q-meter, EMI and EMC, Interference and noise reduction techniques.

Learning Outcomes:-

After completion of this unit student will

- Understand the basic principle of various bridges(L1)
- Measurement of unknown passive elements like R, L and C(L2)
- Derive the balanced condition for various bridges (L3)

UNIT-V

Sensors and Transducers: Active and passive transducers: Measurement of displacement (Resistance, capacitance, inductance; LVDT) Force (strain gauges) Pressure (piezoelectric transducers) Temperature (resistance thermometers, thermocouples, and thermistors), Velocity, Acceleration, Vibration, pH measurement.

Learning Outcomes:-

After completion of this unit student will

- Understand the basic principle of sensors and transducers (L1)
- Explain working principle of various transducers and sensors (L2)
- Select the appropriate sensor/transducer for the measurement of physical parameters (L5)

Course Outcomes:

- Understand the basic principles of various meters, CROs, signal generators and analyzers, bridges, sensors and transducers.
- Measure amplitude and frequency utilizing oscilloscopes, unknown passive elements like R, L and C, principle of various transducers and sensors.
- Analyze the functioning of various types of probes, derive the balanced condition for various bridges.
- Distinguish principles of working of wave analyzer and spectrum analyzer, types of bridge circuits.
- Select the appropriate sensor/transducer for the measurement of physical parameters.

Text Books:

- 1. D. Helfrick, W.D. Cooper, "Modern Electronic Instrumentation and Measurement Techniques", 2nd edition, Pearson Education India, 2015.
- 2. H.S.Kalsi, "Electronic Instrumentation", 3rdedition, McGraw Hill Education, 2017.

References:

- 1. David A. Bell, "Electronic Instrumentation and Measurements", Oxford Univ. Press, 2007
- 2. B.M. Oliver, J.M. Cage, "Electronic Measurements and Instrumentation", TMH Reprint 2009.
- 3. Ernest O. Doebelin and Dhanesh N Manik, "Measurement Systems", 6th Ed., TMH,2010.

(19A04605e) RADAR SYSTEMS PROFESSIONAL ELECTIVE-II

Course Objectives:

- Radar fundamentals and analysis of radar signals.
- To understand various technologies involved in the design of radar transmitters and receivers.
- To learn various like MTI, Doppler and tracking radar and their comparison.

UNIT- I

Basics of RADAR: Introduction, Maximum Unambiguous Range, Simple form of Radar Equation, Radar Block Diagram and Operation, Radar Frequencies and Applications, Prediction of Range Performance, Minimum Detectable Signal, Receiver Noise, Modified Radar Range Equation, Illustrative Problems.

RADAR Equation: SNR, Envelope Detector, False Alarm Time and Probability, Integration of Radar Pulses, Radar Cross Section of Targets (simple targets - sphere, cone-sphere), Transmitter Power, PRF and Range Ambiguities, System Losses (qualitative treatment), Illustrative Problems.

Learning Outcomes:-

After completion of this unit student will

- Solve range estimation problems based on Radar equation (L3)
- Understand the Radar Cross Section and its fluctuations (L1)

UNIT- II

CW and Frequency Modulated RADAR: Doppler Effect, CW Radar – Block Diagram, Isolation between Transmitter and Receiver, Non-zero IF Receiver, Receiver Bandwidth Requirements, Applications of CW radar, Illustrative Problems.

FM-CW Radar: Range and Doppler Measurement, Block Diagram and Characteristics (Approaching/ Receding Targets), FM-CW altimeter, Multiple Frequency CW Radar.

Learning Outcomes:-

After completion of this unit student will

- Understand working principle of CW Radar, FM-CW altimeter(L1)
- Apply the principles to solve problems related to CW Radar(L2)

UNIT- III

MTI and Pulse Doppler RADAR: Introduction, Principle, MTI Radar with - Power Amplifier Transmitter and Power Oscillator Transmitter, Delay Line Cancellers – Filter Characteristics, Blind Speeds, Double Cancellation, And Staggered PRFs. Range Gated Doppler Filters, MTI Radar Parameters, Limitations to MTI Performance, MTI versus Pulse Doppler radar.

Learning Outcomes:-

After completion of this unit student will

- Describe working of Doppler and MTI Radars (L2)
- Analyze the problem of blind speeds and study the mitigation methods (L3)

UNIT- IV

Tracking RADAR: Tracking with Radar, Sequential Lobing, Conical Scan, Monopulse Tracking Radar – Amplitude Comparison Monopulse (one- and two- coordinates), Phase Comparison Monopulse, Tracking in Range, Acquisition and Scanning Patterns, Comparison of Trackers.

Learning Outcomes:-

After completion of this unit student will

- Explain various tracking methods of RADAR (L2)
- Comparison of various tracking methods(L5)

UNIT -V

Detection of RADAR Signals in Noise: Introduction, Matched Filter Receiver – Response Characteristics and Derivation, Correlation Function and Cross-correlation Receiver, Efficiency of Non-matched Filters, Matched Filter with Non-white Noise.

RADAR Receivers: Noise Figure and Noise Temperature, Displays – types. Duplexers – Branch type and Balanced type, Circulators as Duplexers. Introduction to Phased Array Antennas – Basic Concepts, Radiation Pattern, Beam Steering and Beam Width changes, Series versus Parallel Feeds, Applications, Advantages and Limitations.

Learning Outcomes:-

After completion of this unit student will

- Understand the basic principles of Phased array antennas(L1)
- Analyze the performance of Matched filter under AWGN environment(L3)

Course Outcomes

- Understand the Radar cross section and its fluctuations, various radar like MTI, Doppler and tracking radar and their comparison, the basic principles of phased array antennas, working principle of CW Radar, FM-CW altimeter
- Apply the principles to solve problems related to CW Radar,Describe working of Doppler and MTI Radarsand explain various tracking methods of RADAR
- Analyze the problem of blind speeds and study the mitigation methods, performance of Matched filter under AWGN environment.
- Comparison of various tracking methods.

TEXT BOOKS:

1. Merrill I. Skolnik, "Introduction to Radar Systems", 3rd Edition, Tata McGraw-Hill, 2001.

REFERENCES:

- 1. Byron Edde, "Radar Principals, Technology, Applications", Pearson Education, 2004.
- 2. Peebles, Jr., P.Z.Wiley, "Radar Principles", NewYork, 1998.

3 0 0 3

(19A01604a) INDUSTRIAL WASTE AND WASTE WATER MANAGEMENT OPEN ELECTIVE-II

Course Objectives:

- To teach Health and Environment Concerns in waste water management
- To teach material balance and design aspects of the reactors used in waste water treatment.
- To impart knowledge on selection of treatment methods for industrial waste water
- To teach common methods of treatment in different industries
- To provide knowledge on operational problems of common effluent treatment plant

UNIT –I

Industrial water Quantity and Quality requirements:

Boiler and cooling waters–Process water for Textiles, Food processing, Brewery Industries, power plants, fertilizers, sugar mills Selection of source based on quality, quantity and economics. Use of Municipal wastewater in Industries – Adsorption, Reverse Osmosis, Ion Exchange, Ultra filtration, Freezing, Elutriation, Removal of Colour, Odour and Taste.

Learning Outcomes:

At the end of the unit, students will be able to:

- Learn the procedures for assessment of quality of Industrial water
- Suggest different processes of handling waste water

UNIT –II

Basic theories of Industrial Wastewater Management: Industrial waste survey - Measurement of industrial wastewater Flow-generation rates – Industrial wastewater sampling and preservation of samples for analysis -Wastewater characterization-Toxicity of industrial effluents-Treatment of wastewater-unit operations and processes-Volume and Strength reduction – Neutralization and Equalization, Segregation and proportioning- recycling, reuse and resources recovery

Learning Outcomes:

At the end of the unit, students will be able to:

- Measure industrial waste water flow
- Characterize waste water
- Suggest techniques for treatment of waste water.

UNIT –III

Industrial wastewater disposal management: Discharges into Streams, Lakes and oceans and associated problems, Land treatment - Common Effluent Treatment Plants: advantages and suitability, Limitations and challenges- Recirculation of Industrial Wastes- Effluent Disposal Method

Learning Outcomes:

At the end of the unit, students will be able to:

- Understand options for waste water disposal.
- Explain functioning of common effluent treatment plants

$\mathbf{UNIT} - \mathbf{IV}$

Process and Treatment of specific Industries-1: Manufacturing Process and origin, characteristics, effects and treatment methods of liquid waste from Steel plants, Fertilizers, Textiles, Paper and Pulp industries, Oil Refineries, Coal and Gas based Power Plants

Learning Outcomes:

At the end of the unit, students will be able to:

- Understand the character of waste water from Steel plants and refineries
- Suggest suitable waste water treatment techniques

UNIT – V

Process and Treatment of specific Industries-2: Manufacturing Process and origin, characteristics, effects and treatment methods of liquid waste from Tanneries, Sugar Mills, Distillers, Dairy and Food Processing industries, Pharmaceutical Plants

Learning Outcomes:

At the end of the unit, students will be able to:

- Understand the character of waste water from tanneries and distilleries
- Suggest suitable waste water treatment techniques

Course Outcomes:

Upon the successful completion of this course, the students will be able to:

- Design treatment methods for any industrial wastewater.
- Examine the manufacturing process of various industries.
- Assess need for common effluent treatment plant for an industry
- Test and analyze BOD, COD, TSS and MPN in waste water.

TEXT BOOK

1. M. N. Rao and A. K. Dutta, "Wastewater Treatment", Oxford & IBH, New Delhi.

2. K.V. S. G. Murali Krishna, "Industrial Water and Wastewater Management".

REFERENCES

 A. D. Patwardhan, "Industrial Wastewater treatment", PHI Learning, Delhi
 Metcalf and Eddy Inc., "Wastewater Engineering", Tata McGraw Hill co., New Delhi.
 G. L. Karia & R.A. "Christian Wastewater Treatment- Concepts and Design Approach", Prentice Hall of India.

(19A01604b) BUILDING SERVICES AND MAINTAINANCE OPEN ELECTIVE-II

Course Objectives:

- To impart knowledge in concepts of building maintenance
- To insists the student to observe various practices of good building maintenance
- To teach the importance safety in buildings
- To demonstrate the use of ventilation in buildings.
- To give the list of different types of machineries in buildings

UNIT – I

PLUMBING SERVICES: Water supply system- fixing of pipes in buildings – maintenance of buildings- water meters-sanitary fittings-design of building drainage- gas supply systems

Learning Outcomes:

At the end of the unit, students will be able to:

- Understand water supply system
- Understand the building drainage system.

UNIT – II

VENTILATION: Necessity of ventilation – functional requirements – systems of ventilation-natural ventilation-artificial ventilation-air conditioning-systems of air conditioning-essentials of air conditioning-protection against fire caused by air conditioning systems.

Learning Outcomes:

At the end of the unit, students will be able to:

- Understand concepts of ventilation
- Understand concepts of air conditioning

UNIT – III

THERMAL INSULATION: Heat transfer system-thermal insulating materials-methods of thermal insulation-economics of thermal insulation-thermal insulation of exposed walls, doors, windows and roofs.

Learning Outcomes:

At the end of the unit, students will be able to:

- Understand methods of insulation
- Understand materials of insulation

$\mathbf{UNIT} - \mathbf{IV}$

FIRE SAFETY: Causes of fire in buildings-fire safety regulations-charecteristics of fire resisting materials- fire resistant construction-heat and smoke detecters-fire alarms-fire fighting pump and water storage.

Learning Outcomes:

At the end of the unit, students will be able to:

- Understand safety regulations of fire system
- Know about the implementation and usage of various fire resistant materials in building construction

UNIT – V

MACHINERIES IN BUILDINGS: Lifts-essential requirements-design considerationsescalators-essential requirements-electrical installations in buildings-lighting in buildings-methods of electrical wiring-earthing

Learning Outcomes:

At the end of the unit, students will be able to:

- Understanding of different machineries of buildings
- Understanding of electrical installation of buildings

Course Outcomes:

Student will be able to understand

- Concepts of plumbing, drainage system and gas supply system
- Concepts of ventilation and air conditioning
- Concepts of thermal insulation and economics of thermal insulation
- Concepts of fire safety in buildings and fire resistant construction
- Concepts of different machineries of buildings

TEXT BOOKS:

- 1. B.C.Punmia, Er. Ashok K jain, Arun K Jain "Building construction", Laxmi publications pvt.ltd. New Delhi.
- 2. Janardhan Jah, S.K Sinha, "Building construction", Khanna publishers
- 3. Rangwala, "Building construction", Charothar publishing house.

REFERENCE BOOKS:

- 1. David V Chaddrton, "Building services engineering", Outledge
- 2. P.C Varghees "Building construction", Printice hall india

(19A02604a) INDUSTRIAL AUTOMATION OPEN ELECTIVE-II

Course Objectives:

- To understand the basic concepts of Automation
- To understand the concepts of automation cycle and hardware components
- To gain knowledge about pneumatic and hydraulic devices
- To understand the concepts of sensors and actuators
- To know the use of Robotics used in industries automation

UNIT -I:

Introduction to Automation

Definition and fundamentals of automation, reasons for Automating, basic elements of an automated system: Power, Program and control system, safety, maintenance & repair diagnosis, error detection and recovery, Automation principles and strategies: USA principle, strategies of automation and production system, automation migration strategy

Learning Outcomes:

At the end of the unit, students will be able to:

- To understand the fundamental concepts of automation and its basic elements
- To understand system safety requirements
- To understand about maintenance and repair strategies
- To know about production system automation

UNIT-II:

Mechanization and Automation

Basic principles of Mechanization and automation, product cycle, hard Vs flexible automation, Capital- intensive Vs low cost automation. Types of systems-mechanical, electrical, hydraulic, pneumatic and hybrid systems, Automation using CAMS, Geneva mechanisms, gears etc. Assembly line Automation: automated assembly systems, transfer systems, vibratory bowl feeders, non-vibratory feeders, part orienting, feed track, part placing & part escapement systems. Introduction to Material storage/ handling and transport systems, and its automation using AS/RS, AGVS and conveyors etc.

Learning Outcomes:

At the end of the unit, students will be able to:

- To know about how to analyse the various automation methods
- To know about assembling and placing of various parts
- To distinguish between mechanization and automation of systems
- To know about material storage, handling and automation using various approaches

UNIT -III:

Pneumatics and hydraulics

Hydraulic and pneumatic devices-Different types of valves, Actuators and auxiliary elements in Pneumatics & hydraulics, their applications and use of their ISO symbols. Synthesis and design of circuits (up to 3 cylinders)–pneumatic, electro pneumatics and hydraulics. Design of Electro-Pneumatic Circuits using single solenoid and double solenoid valves; with and without grouping.

Learning Outcomes:

At the end of the unit, students will be able to:

- To know design of various pneumatic and hydraulic components
- To understand about synthesis and design of Pneumatic circuits
- To understand about electro pneumatic circuits
- To design using various solenoid valves with and without grouping

UNIT -IV:

Sensors & Actuators Sensors

Selection of sensors (Displacement, temperature, acceleration, force /pressure) based on static and dynamic characteristics. Interfacing: Concept of interfacing, bit accuracy and sampling speed, amplifying electronics, and microcontroller. Actuators: Principle and selection of electro mechanical actuators (1) DC motors (2) Stepper Motors (3) Solenoid Actuators (4) Servo Motors (5) BLDC

Learning Outcomes:

At the end of the unit, students will be able to:

- To know about selection of sensors and actuators based on dynamic characteristics
- To understand about necessity of interfacing sensors with Microcontroller
- To understand principle and selection of actuators

• To apply various electro mechanical actuators to certain machines

UNIT- V:

Robots and their applications

Introduction to robots, Types, Classifications, Selection of robots, Robot Degrees of freedom, Robot configuration, Accuracy and repeatability, Specification of a robot, Robot feedback controls: Point to point control and Continuous path control, Control system for robot joint, Adaptive control, Drives and transmission systems, End effectors, Industrial robot applications of robots

Learning Outcomes:

At the end of the unit, students will be able to:

- To know about Robots, classification, selection and specifications
- To understand the use of robotics in industrial applications
- To know about various feedback controls of Robot
- To understand how adaptive control strategies can be used in Robots

Course Outcomes:

- 1. Understand the basic concepts of Industrial automation
- 2. Design and analysis of automation methods, placing and assembling of various parts
- 3. Design of various processing and control circuits using pneumatic and hydraulic elements
- 4. Selection of sensors based on the industrial application
- 5. Role of robotics in industrial applications

TEXT BOOKS:

- 1. Stamatios Manesis and George Nikolakopoulos, "Introduction to Industrial Automation", CRC Press, 2018.
- 2. Frank Lamb, "Industrial Automation", Hands on, Mc Graw Hill Education, 2013.

REFERENCES:

1. Richerd L. Shell and Ernest L. Hall, "Hand Book of Industrial Automation", CRC Press, 2000.

(19A02604b) SYSTEM RELIABILITY CONCEPTS (OPEN ELECTIVE-II)

Course Objectives:

To make the students learn about:

- The Basic concepts, rules for combining probabilities of events, failure density and distribution functions.
- Evaluation of network Reliability / Unreliability and types of redundancies.
- Evaluation of network Reliability / Unreliability using conditional probability method.
- Expected value and standard deviation of Exponential distribution and Measures of reliability.
- Evaluation of Limiting State Probabilities of one, two component repairable models.

UNIT-I:

Basic Probability Theory

Basic concepts – Rules for combining Probabilities of events – Failure Density and Distribution functions – Bernoulli's trials – Binomial distribution – Expected value and standard deviation for binomial distribution – Examples

Learning Outcomes:

At the end of the unit, students will be able to:

- To know about basic rules for probabilities of events
- To distinguish between pdf and cdf
- Get detailed information about Probability of failure density and distribution functions
- Obtain the expected value and standard deviation for binomial distribution.

UNIT-II:

Network Modeling and Reliability Evaluation

Basic concepts – Evaluation of network Reliability / Unreliability – Series systems, Parallel systems, Series - Parallel systems, partially redundant systems – Types of redundancies - Evaluation of network Reliability / Unreliability using conditional probability method – Paths

based and Cutset based approach – complete event tree and reduced event tree methods - Examples.

Learning Outcomes:

At the end of the unit, students will be able to:

- How to find the Probability of success and failures of network using different approaches for series-parallel configurations.
- Classification of redundancies.
- To find reliability / unreliability of complex systems using different methods
- Comparison of approaches to solve probability index of SISO system

UNIT-III:

Time Dependent Probability

Basic concepts – Reliability functions f(t), Q(t), R(t), h(t) – Relationship between these functions – Bath tub curve – Exponential failure density and distribution functions - Expected value and standard deviation of Exponential distribution – Measures of reliability – MTTF, MTTR, MTBF – Evaluation of network reliability / Unreliability of simple Series, Parallel, Series-Parallel systems - Partially redundant systems - Evaluation of reliability measure – MTTF for series and parallel systems – Examples.

Learning Outcomes:

At the end of the unit, the student will be able to

- Understand the concepts of time domain functions and relationship between them.
- Obtain the expected value and standard deviation for exponential distribution.
- Obtain the values of probabilistic measures for series and parallel configurations.
- To obtain probabilistic measures for fully redundant and partially redundant configurations

UNIT-IV:

Discrete Markov Chains & Continuous Markov Processes

Markov Chains: Basic concepts – Stochastic transitional Probability matrix – time dependent probability evaluation – Limiting State Probability evaluation – Absorbing states. Markov Processes: Modeling concepts – State space diagrams – time dependent reliability evaluation of single component repairable model – Evaluation of Limiting State Probabilities of one, two component repairable models – Frequency and duration concepts – Frequency balance approach - Examples.

Learning Outcomes:

At the end of the unit, the student will be able to

- Understand the concepts of Stochastic Transitional Probability Matrix, Limiting State Probability
- To know about evaluation for one and two component repairable models.
- Understand the concept of Frequency balance approach.
- To distinguish between Markov chains and Markov processes

UNIT-V:

Multi Component & Approximate System Reliability Evaluation

Recursive relation for evaluation of equivalent transitional rates– cumulative probability and cumulative frequency and 'n' component repairable model – Series systems, Parallel systems, Basic probability indices – Series, Parallel systems – Complex Systems– Cutset approach – Examples.

Learning Outcomes:

At the end of the unit, the student will be able to

- Understand the concepts of recursive relation for evaluation of equivalent transitional rates.
- Obtain the cumulative probability and cumulative frequency for different systems
- To know about computation of basic probability indices for series, parallel configurations
- To know how to evaluate basic probability indices using cut set approach

Course Outcomes:

After completing the course, the student should be able to do the following:

- Understand the concepts for combining Probabilities of events, Bernoulli's trial, and Binomial distribution.
- Network Reliability/Unreliability using conditional probability, path and cutset based approach, complete event tree and reduced event tree methods.
- Understanding Reliability functions and to develop relationship between these functions, expected value and standard deviation of Exponential distribution and measures of reliabilities.

- Analyze the time dependent reliability evaluation of single component repairable model, frequency and duration concepts, Frequency balance approach.
- Recursive relation for evaluation of equivalent transitional rates, cumulative probability and cumulative frequency and 'n' component repairable model.

Text Books:

- 1. Roy Billinton and Ronald N. Allan, "Reliability Evaluation of Engineering Systems", Reprinted in India B. S. Publications, 2007.
- 2. E. Balagurusamy, "Reliability Engineering", Tata McGraw Hill, 2003.

Reference Books:

- 1. E. E. Lewis, "Introduction to Reliability Engineering" Wiley Publications.
- 2. Charles E. Ebeling, "Reliability and Maintainability Engineering", Tata McGraw Hill, 2000.
- 3. by Ajit Kumar Verma, Srividya Ajit and Durga Rao Karanki, Springer, "Reliability and Safety Engineering" 2nd edition, 2016.
- 4. Rausand and Arnljot Hoyland, "System Reliability Theory Marvin", Wiley Publictions.

(19A03604a) INTRODUCTION TO MECHATRONICS OPEN ELECTIVE

Course Objectives:

- Familiarize the technologies behind modern mechatronic systems.
- Explain fundamentals for the development of fully automated system.
- Develop a robotic or automated systems focusing on the hardware and software integration.
- Demonstrate the development and design of mechatronic system and MEMS.

UNIT – I

Introduction: Definition of Mechatronics, Need for Mechatronics in Industry, Objectives of mechatronics, mechatronics design process, Mechatronics key elements, mechatronics applications – Computer numerical control (CNC) machines, Tool monitoring systems, Flexible manufacturing system (FMS), Industrial Robots, Automatic packaging systems, Automatic inspection systems.

Learning Outcomes:

At the end of the unit, the student will be able to

- Explain the role of mechatronics in industry.(12)
- Identify the application of mechatronics in automation industry.(13)

UNIT – II

Sensors: Static characteristics of sensors, Displacement, Position and Proximity sensors, Force and torque sensors, Pressure sensors, Flow sensors, Temperature sensors, Acceleration sensors, Level sensors, Light sensors, Smart material sensors, Micro and Nano sensors, Selection criteria for sensors.

Learning Outcomes:

At the end of the unit, the student will be able to

- Classify various types of sensors. (12)
- Choose sensors for particular application. (13)
- Measure different quantity's using sensors. (14)

UNIT – III

Actuators: Mechanical, Electrical, Hydraulic and Pneumatic Actuation systems, Characteristics and their limitations, Design of Hydraulic and Pneumatic circuits, Piezoelectric actuators, Shape memory alloys, Selection criteria for actuators.

Learning Outcomes:

At the end of the unit, the student will be able to

- Classify various actuation systems. (12)
- Choose the criterion for different actuators. (11)

UNIT – IV

Microprocessors, Microcontrollers and Programmable Logic Controllers: Architecture of of Microprocessor, Microcontroller and Programmable Logic Controller, PLC Programming using ladder diagrams, logics, latching, sequencing, timers relays and counters, data handling, Analog input/output, selection of controllers.

Learning Outcomes:

At the end of the unit, the student will be able to

- Understand the architecture of microprocessors, microcontrollers and PLC. (L2)
- Formulate various programs using PLC. (L6)

$\mathbf{UNIT} - \mathbf{V}$

Design of mechotronics systems, Mechotronics design elements, Traditional mechatronics systems, Embedded systems, Procedure for designing a mechotronic systems.

Learning Outcomes:

At the end of the unit, the student will be able to

- Understanding design of mechotronics . (L2)
- Various Mechotronics systems. (L4)
- Design Aspects of Mechotronic systems. (L2)

Course Outcomes

Upon successful completion of this unit, the student will be able to:

- Explain mechatronics systems in industry. (12)
- Identify mechatronic systems encountered in practice. (13)
- Examine the components of a typical mechatronic system. (14)
- Compare the various techniques used for development of mems. (14)
- Develop programs using plc. (16)

Text books:

- 1. Er R. Rajput, "A Text book of Mechatronics", S.Chand, 2nd edition-2016.
- 2. James J Allen, "Micro Electro Mechanical Systems Design", CRC Press Taylor & Francis group, 2005.

Reference Text books:

- 1. WBolton, "Mechatronics Electronics Control Systems in Mechanical and Electrical Engineering", 3rd edition, Pearson Education Press, 2005.
- Devadas Shetty and Richard A Kolk, "Mechatronic System Design", 2nd edition, Cengage learning, 2010.
- 3. Clarence W. de Silva, "Mechatronics an Integrated Approach", CRC Press, 2004.
- 4. Ganesh S Hedge, "Mechatronics", Jones & Bartlett Learning, 2010.

(19A03604b) OPTIMIZATION TECHNIQUES THROUGH MATLAB OPEN ELECTIVE-II

Course Objectives

- Introduce basics of MATLAB
- Familiarize the fundamentals of optimization
- Explain single variable optimization using various methods
- Implement multi variable optimization using various methods
- Train various evolutionary algorithms.

UNIT -I

Introduction to MAT LAB: Overview, MATLAB Preliminaries, Basics of MATLAB, Beyond the Basics of MATLAB, Popular Functions and Commands, Plotting using MATLAB, Optimization with MATLAB.

Learning Outcomes:

After completion of this unit, students will be able to

- Write simple codes in MATLAB. (L3)
- Plot the data using MATLAB. (L3)
- Implement optimization models in MATLAB. (L3)

UNIT -II

Introduction to Optimization: Statement of an optimization problem, Classifications of optimization Problems: Single variable optimization, Multi variable optimization with no constraints, Multi variable optimization with equality constraints, Multi variable optimization with inequality constraints, Convex and Concave programming.

Learning Outcomes:

After completion of this unit, students will be able to

- Build optimization problem. (11)
- Solve various optimization problems(13)
- Compare convex and concave programming (14)

UNIT -III

Single Variable Optimization: Finite difference method, Central difference method, Runge-Kutta method, interval halving method, golden section method with MATLAB code.

Learning Outcomes:

After completion of this unit, students will be able to

- Understand various methods involving single variable optimization. (12)
- Develop codes in matlab for different methods. (13)
- Identify methods for solving a single variable optimization problem. (13)

UNIT- IV

Multi Variable Optimization: Conjugate gradient method, Newton's method, Powell's method, Flectcher- Reeves method, Hook and Jeeves method, interior penalty function with MATLAB code.

Learning Outcomes:

After completion of this unit, students will be able to

- Apply various methods involving multi variable optimization. (l2)
- Develop codes in matlab for solving various multi variable optimization problems. (13)
- Choose methods for solving a multi variable optimization problem. (13)

UNIT -V

Evolutionary Algorithms: Overview, Genetic Algorithms: Basics of Genetic Algorithms, Options in MATLAB, Multi Objective Optimization using Genetic Algorithms, Ant Colony Optimization, Simulated Annealing, Particle Swarm Optimization.

Learning Outcomes:

After completion of this unit, students will be able to

- Apply different types of genetic algorithms. (13)
- Model optimization problems using genetic algorithms in matlab. (13)
- Compare different genetic algorithms for performance. (15)

Course Outcomes:

After completion of this course the student can be able to

- Use optimization terminology and concepts, and understand how to classify an optimization problem.(14)
- Apply optimization methods to engineering problems.(l3)
- Implement optimization algorithms.(13)
- Compare different genetic algorithms. (15)
- Solve multivariable optimization problems. (14)

TEXT BOOKS:

- 1. Rao V.Dukkipati, MATLAB: "An Introduction with Applications", Anshan, 2010.
- 2. Achille Messac, "Optimization in practice with MATLAB", Cambridge University Press, 2015.
- 3. Jasbir S Arora, "Introduction to optimum design", 2nd edition. Elsevier, 2004.

REFERENCES:

- 1. Cesar Perez Lopez, "MATLAB Optimization Techniques", Academic press, Springer publications, 2014.
- 2. Steven C.Chapra, "Applied Numerical Methods with MATLAB for Engineers and scientists": 4th edition, McGraw-Hill Education, 2018.

(19A04604a) BASICS OF VLSI OPEN ELECTIVE-II

Course Objectives:

The objectives of the course are to

- Learn and Understand IC Fabrication process steps required for various MOS circuits
- Understand and Experience VLSI Design Flow
- Learn Transistor-Level CMOS Logic Design
- Understand VLSI Fabrication and Experience CMOS Physical Design
- Learn to Analyze Gate Function and Timing Characteristics

UNIT – I

Introduction:Introduction to MOS Technology – MOS, PMOS, NMOS, CMOS and BiCMOStechnologies, fabrication fundamentals: Oxidation, Lithography, Diffusion, Ionimplantation, Metallization and Encapsulation.

Basic Electrical Properties: Basic Electrical Properties of MOS,CMOS and BiCMOS Circuits, I_{DS}-V_{DS}relationships, MOS transistor threshold Voltage, g_m , g_{ds} , figure of merit ωo , Passtransistor, NMOS inverter, Various pull - ups, Determination of pull-up to pulldown ratio (Z_{pu} / Z_{pd}), CMOS Inverter analysis and design, BiCMOS inverters,Latch-up in CMOS circuits.

Learning Outcomes:

After completion of this unit, students will be able to

- Demonstrate a clear understanding of CMOS fabrication flow and technology scaling (L2)
- Analyze the electrical properties of MOS and BiCMOS circuits (L3)
- Design MOSFET based logic circuit (L4)

UNIT – II

VLSI Circuit Design Processes:VLSI Design Flow, MOS Layers, Stick Diagrams, Design Rules and Layouts,Lambda based design rules, Contact cuts, CMOS Lambda based design rules,Layout Diagrams for logic gates, Transistor structures, wires and vias, Scaling ofMOS circuits- Scaling models, scaling factors, scaling factors for device parameters, Limitations of Scaling.

Learning Outcomes:

After completion of this unit, students will be able to

- Understand the design rules and layout diagram for logic gates, limitations of scaling (L1)
- Draw the Layout of simple MOS circuit using Lambda based design rules (L2)

UNIT – III

Gate Level Design and Layout: Architectural issues, Switch logic networks: Gate logic, Alternate gate circuit: Pseudo-NMOS Dynamic CMOS logic. Basic circuit concepts, Sheet Resistance R_S and its concept to MOS, Area Capacitance Units, Calculations, The delay unitT, Inverter Delays, Driving large Capacitive Loads, Wiring Capacitances, Fan-inand fan-out, Choice of layers

Learning Outcomes:

After completion of this unit, students will be able to

- Apply basic circuit concepts to MOS circuits. (L2)
- Estimate the propagation delays in CMOS circuits (L3).

UNIT – IV

Subsystem Design:Subsystem Design, Shifters, Adders, ALUs, Multipliers: Array multiplier, SerialParallel multiplier, Parity generator, Comparators, Zero/One Detectors, Up/DownCounter, Memory elements: SRAM, DRAM, ROM, Serial Access Memories.

Learning Outcomes:

After completion of this unit, students will be able to

- Apply the Lambda based design rules for subsystem design (L2)
- Design of Adders, Multipliers and memories etc(L4)
- Design digital systems using MOS circuits(L4)

UNIT – V

Semiconductor Integrated Circuit Design:PLDs, FPGAs, CPLDs, Standard Cells, Programmable Array Logic,Programmable Logic Array Design Approach.

Learning Outcomes:

After completion of this unit, students will be able to

- Analyze various architectures and device technologies of PLDs(L3)
- Design simple logic circuit using PLA, PAL, FPGA and CPLD.(L4)

Course Outcomes:

- Learn the basic fabrication process of MOS transistors, study CMOS inverter circuits, basic circuit concepts such as Sheet Resistance, Area Capacitance and Delay calculation, Field programmable gate arrays and realization techniques, CPLDs and FPGAs for implementing the various logic functions.
- Apply CMOS technology-specific layout rules in the placement and routing of transistors and interconnect, and to verify the functionality.
- Analyze the performance of CMOS Inverter circuits
- Compare various Scaling models and understand the effect of scaling on device parameters

TEXT BOOKS:

- 1. Kamran Eshraghian, "Essentials of VLSI circuits and systems", EshraghianDouglesand A. Pucknell, PHI, 2005 Edition
- 2. Wayne Wolf, "Modern VLSI Design", 3rd Edition, Pearson Education, 1997.

REFERENCE BOOKS:

- 1. John .P. Uyemura, "CMOS logic circuit Design", Springer, 2007.
- 2. Neil H. E Weste, "CMOS VLSI Design A Circuits and Systems Perspective", 3rd edition, DavidHarris, Ayan Banerjee, Pearson, 2009.

(19A04604b) PRINCIPLES OF COMMUNICATION SYSTEMS OPEN ELECTIVE-II

Course Objectives:

- To understand the concept of various modulation schemes and multiplexing.
- To apply the concept of various modulation schemes to solve engineering problems.
- To analyse various modulation schemes.
- To evaluate various modulation scheme in real time applications.

UNIT-I:

Amplitude Modulation

Introduction to Noise and Fourier Transform. An overview of Electronic Communication Systems. Need for Frequency Translation, Amplitude Modulation: DSB-FC, DSB-SC, SSB-SC and VSB. Frequency Division Multiplexing. Radio Transmitter and Receiver.

Learning Outcomes:

At the end of the unit, the student should be able to

- Understand the concept of noise, Fourier transform, career modulation and frequency division multiplexing (L1).
- Apply the concept of amplitude modulation solve engineering problems (L2).
- Analyse various amplitude modulation schemes (L3).
- Evaluate various amplitude modulation schemes in real time applications (L3).

UNIT-II:

Angle Modulation

Angle Modulation, Tone modulated FM Signal, Arbitrary Modulated FM Signal, FM Modulation and Demodulation. Stereophonic FM Broadcasting.

Learning Outcomes:

At the end of the unit, the student should be able to

- Understand the concept of angle modulation and its components (L1).
- Apply the concept of frequency modulation to solve engineering problems (L2).
- Analyse angle modulation schemes (L3).
- Evaluate frequency modulation scheme in real time applications (L3).

UNIT-III:

Pulse Modulation

Sampling Theorem: Low pass and Band pass Signals. Pulse Amplitude Modulation and Concept of Time Division Multiplexing. Pulse Width Modulation. Digital Representation of Analog Signals.

Learning Outcomes:

At the end of the unit, the student should be able to

- Understand the concept of various pulse modulation schemes and time division multiplexing (L1).
- Analyse various pulse modulation schemes (L3).

UNIT-IV:

Digital Modulation

Binary Amplitude Shift Keying, Binary Phase Shift Keying and QuadraturePhase Shift Keying, Binary Frequency Shift Keying. Regenerative Repeater.

Learning Outcomes:

At the end of the unit, the student should be able to

- Understand the concept of various digital modulation schemes (L1).
- Analyze various digital modulation schemes (L3).

UNIT-V:

Communication Systems

Satellite, RADAR, Optical, Mobile and Computer Communication (Block diagram approach only).

Learning Outcomes:

At the end of the unit, the student should be able to

• Understand the concept of various communication systems (L1).

Note: The main emphasis is on qualitative treatment. Complex mathematical treatment may be avoided.

Course Outcomes:

- Understand the concept of various modulation schemes and multiplexing (L1).
- Apply the concept of various modulation schemes to solve engineering problems (L2).
- Analyse various modulation schemes, and evaluate various modulation scheme in real time applications (L3).

TEXT BOOKS:

1. Herbert Taub, Donald L Schilling and Goutam Saha, "Principles of Communication Systems", 3rdEdition, Tata McGraw-Hill Publishing Company Ltd., 2008.

REFERENCES:

- 1. B. P. Lathi, Zhi Ding and Hari M. Gupta, "Modern Digital and Analog Communication Systems", 4th Edition, Oxford University Press, 2017.
- 2. K. Sam Shanmugam "Digital and Analog Communication Systems", Wiley India Edition, 2008.

Blooms' Learning levels:

L1: Remembering and Understanding

- L2: Applying
- L3: Analyzing, Evaluating

(19A05604a) FUNDAMENTALS OF VR/AR/MR Open Elective-II (Common to CSE & IT)

Course Objectives:

This course is designed to:

- Explore the history of spatial computing and design interactions
- Understand the foundational principles describing how hardware, computer vision algorithms function
- Learn Virtual reality animation and 3D Art optimization
- Demonstrate Virtual reality
- Introduce to the design of visualization tools

UNIT-I

How Humans interact with Computers: Common term definition, introduction, modalities through the ages (pre- 20th century, through world war-II, post world war-II, the rise of personal computing, computer miniaturization), why did we just go over all of this?, types of common HCI modalities, new modalities, the current state of modalities for spatial computing devices, current controllers for immersive computing systems, a note on hand tracking and hand pose recognition.

Designing for our Senses, Not our Devices: Envisioning a future, sensory technology explained, who are we building this future for?, sensory design, five sensory principles, Adobe's AR story.

Learning Outcomes:

At the end of the unit, students will be able to:

- Explain common modalities and their pros and cons.(L2)
- Demonstrate Mapping modalities to current industry inputs(L2)
- Explore the importance of design with spatial computing(L5)

UNIT-II

Virtual Reality for Art: A more natural way of making 3D art, VR for animation.

3D art optimization: Introduction, draw calls, using VR tools for creating 3D art, acquiring 3D models vs making them from scratch.

How the computer vision that makes augmented reality possible works: Who are we?, a brief history of AR, how and why to select an AR platform, mapping, platforms, other development considerations, the AR cloud.

Learning Outcomes:

At the end of the unit, students will be able to:

- Utilize VR tools for creating 3D Animations(L3)
- Analyze how and why to Select an AR Platform(L4)

UNIT-III

Virtual reality and augmented reality: cross platform theory: Why cross platform? The role of game engines, understanding 3D graphics, portability lessons from video game design, simplifying the controller input.

Virtual reality toolkit: open source framework for the community: What is VRTK and why people use it?, the history of VRTK, welcome to the steam VR unity toolkit, VRTK v4, the future of VRTK, success of VRTK.

Three virtual reality and augmented reality development practices: Developing for virtual reality and augmented reality, handling locomotion, effective use of audio, common interaction paradigms.

Learning Outcomes:

At the end of the unit, students will be able to:

- Explain why the design approach should be considered at a holistic high level based on the goal of the experience(L2)
- Build VR solutions using Virtual reality toolkit(L6)
- Interpret the development practices in three Virtual reality and Augmented reality development(L2)

UNIT-IV

Data and machine learning visualization design and development in spatial computing: Introduction, understanding data visualization, principles for data and machine learning visualization design and development in spatial computing, why data and machine learning visualization works in spatial computing, 2D data visualization vs 3D data visualization in spatial computing, interactivity in data visualizations and in spatial computing, animation, failures in data visualization, good data visualization design optimize 3D spaces, data representations, info graphics, and interactions, defining distinctions in data visualization and big data for machine, how to create data visualization: data visualization creation pipeline, webXR, data visualization challenges in XR, data visualization industry use case examples of data visualization, 3D reconstruction and direct manipulation of real world data, data visualization is for everyone, hands on tutorials, how to create data visualization, resources.

Learning Outcomes:

At the end of the unit, students will be able to:

- Understand, define, and set data and machine visualization design and development principles in embodied reality(L1)
- Demonstrate best practices, and practical tools to create beautiful and functional data visualizations.(L2)

UNIT-V

Character AI and Behaviors: Introduction, behaviors, current practice: Reactive AI, more intelligence in the system, Deliberative AI, machine learning.

The virtual and augmented reality health technology ecosystem: VR/AR health technology application design, standard UX isn't intuitive, tutorial: insight Parkinson's experiment, companies, case studies from leading Academic institutions.

Learning Outcomes:

At the end of the unit, students will be able to:

- Design a behavioral AI system for a video game(L6)
- Identify issues related to design of virtual reality (VR) and augmented reality (AR) experiences deployed in a health-care context(L3)
- Explain the use of motion data from controllers to reduce the visible tremor of a Parkinson's patient in a virtual environment(L2)

Course outcomes

Upon completion of the course, the students should be able to:

- Explain how the humans interact with computers (L2)
- Apply technical and creative approaches to make successful applications and experiences. (L3)
- Design audio and video interaction paradigms (L6)
- Design Data visualization tools (L6)
- Apply VR/MR/AR in various fields in industry (L3)

Text book

1. Erin Pangilinan, Steve lukas, and Vasanth Mohan, "Creating Augmented & Virtual Realities", 1st edition, O'REILLY, 2019.

References

1. Steve Aukstakalnis, "Practical Augmented Reality", Pearson Education, 2017.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-II Sem L T P C 3 0 0 3

(19A05604b) DATA SCIENCE Open Elective-II (Common to CSE & IT)

Course Objectives

This course is designed to:

- Understand the approaches for handling data related problems
- Explore the mathematical concepts required for Data science
- Explain the basic concepts of data science.
- Elucidate various Machine Learning algorithms.
- Introduce Natural Language Processing and Recommender Systems

UNIT- I

Introduction to Data Science, A Crash Course in Python, Visualising Data.

Learning Outcomes:

At the end of the unit, students will be able to:

- Describe the importance of data analysis (L1).
- Identify the key connectors of Data Science (L4).
- Interpret and Visualize the data using bar charts, line charts and scatter plots (L3).

UNIT-II

Linear Algebra, Statistics, Probability, Hypothesis and Inference, Gradient Descent.

Learning Outcomes:

At the end of the unit, students will be able to:

- Identify the Correlation between two vectors (L4).
- Test a given hypothesis (L3).
- Compute mean, median and mode for the given data (L3).

UNIT-III

Getting Data, Working with Data, Machine Leaning, k-Nearest Neighbors, Naïve Bayes.

Learning Outcomes:

At the end of the unit, students will be able to:

- Compute dimensionality reduction using PCA (L3).
- Differentiate supervised and unsupervised learning methods (L4).
- Describe overfitting, under fitting, bias, variance and goodness of learning (L1).
- Solve classification problem using k-nearest neighbour classifier (L3).
- Apply Naïve Bayes classifier to solve decision making problem (L3).

UNIT-IV

Simple Linear Regression, Multiple Regression, Logistic Regression, Decision Trees, Neural Networks.

Learning Outcomes:

At the end of the unit, students will be able to:

- Describe gradient descent approach, maximum likelihood estimation and method of least squares (L1).
- Apply SVM to determine a hyperplane with maximum margin (L3).
- Determine decision tree for given data (L5).
- Describe Perceptron and Back Propagation (L3).

UNIT-V

Clustering, Natural Language Processing, Network Analysis, Recommender Systems.

Database and SQL, MapReduce

Learning Outcomes:

At the end of the unit, students will be able to:

- Determine Clusters in data using k-means and Hierarchical Clustering methods (L5).
- Apply basic SQL Operations using NotQuiteABase (L3).
- Compare User-Based and Item-Based Collaborative Filtering (L2).
- Describe Grammer and MapReduce (L1).

Course Outcomes:

After completion of this course the student would be able to

- Visualize the data using bar charts, line charts and scatter plots (L4).
- Analyse Correlation between two data objects (L4).
- Demonstrate feature selection and dimensionality reduction.(L2)
- Solve decision making problems using k-NN, Naïve Bayes, SVM and Decision. Trees (L3).
- Determine Clusters in data using k-means and Hierarchical Clustering methods (L3).
- Design basic SQL Operations using NotQuiteABase (L6)
- Demonstrate the way to use machine learning algorithms using python. (L2)

Text Books:

1. Data Science from Scratch, First Principles with Python - Joel Grus, O'Reilly, First Edition.

Reference Books:

- 1. The Data Science Handbook, Field Cady, WILEY.
- 2. An Introduction to Data Science, Jeffrey M. Stanton, Jeffrey Stanton, 2012

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-II Sem L T P C 3 0 0 3

(19A27604a) FOOD TOXICOLOGY OPEN ELECTIVE II

PREAMBLE

This text covers about toxins and their relation in food. Examination, identification and prevention of toxins.

Course Objectives

- To know the various toxins and their evaluation.
- To understand their tolerance and control measures.

UNIT – I

Principles of Toxicology: classification of toxic agents; characteristics of exposure; spectrum of undesirable effects; interaction and tolerance; biotransformation and mechanisms of toxicity. Evaluation of toxicity: risk vs. benefit: experimental design and evaluation: prospective and retrospective studies: Controls :Statistics (descriptive, inferential): animal models as predictors of human toxicity: Legal requirements and specific screening methods: LD50 and TD50: in vitro and in vitvo studies; clinical trials.

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Classification of toxic agents; characteristics of exposure;
- Spectrum of undesirable effects; interaction and tolerance; biotransformation and mechanisms of toxicity.
- Evaluation of toxicity: risk vs. benefit: experimental design and evaluation:
- Prospective and retrospective studies: Controls: Statistics (descriptive, inferential): animal models as predictors of human toxicity:
- Legal requirements and specific screening methods: LD50 and TD50: in vitro and in vitvo studies; clinical trials.

UNIT – II

Natural toxins in food: natural toxins of importance in food- toxins of plant and animal origin; microbial toxins (e.g., bacterial toxins, fungal toxins and Algal toxins), natural occurrence, toxicity and significance, determination of toxicants in foods and their management.

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Natural toxins in food: natural toxins of importance in food- toxins of plant and animal origin
- Microbial toxins (e.g., bacterial toxins, fungal toxins and algal toxins), natural occurrence, toxicity and significance
- Determination of toxicants in foods and their management

UNIT – III

Food allergies and sensitivities: natural sources and chemistry of food allergens; true/untrue food allergies; handling of food allergies; food sensitivities (anaphylactoid reactions, metabolic food disorders and idiosyncratic reactions); Safety of genetically modified food: potential toxicity and allergenisity of GM foods. Safety of children consumables.

Learning outcomes:

At the end of unit, students will be able to understand the following

- Natural sources and chemistry of food allergens; true/untrue food allergies; handling of food allergies
- Food sensitivities (anaphylactoid reactions, metabolic food disorders and idiosyncratic reactions)
- Potential toxicity and allergenisity of gm foods. Safety of children consumables.

$\mathbf{UNIT} - \mathbf{IV}$

Environmental contaminants and drug residues in food: fungicide and pesticide residues in foods; heavy metal and their health impacts; use of veterinary drugs (e.g. Malachite green in fish and β - agonists in pork); other contaminants in food, radioactive contamination of food, Food adulteration and potential toxicity of food adulterants.

Learning Outcomes:

At the end of unit, students will be able to understand the following

• Fungicide and pesticide residues in foods; heavy metal and their health impacts

- Use of veterinary drugs (e.g. Malachite green in fish and β agonists in pork); other contaminants in food, radioactive contamination of food
- Food adulteration and potential toxicity of food adulterants.

$\mathbf{UNIT} - \mathbf{V}$

Food additives and toxicants added or formed during food processing: safety of food additives; toxicological evaluation of food additives; food processing generated toxicants: nitroso-compounds, heterocyclic amines, dietary Supplements and toxicity related to dose: common dietary supplements; relevance of the dose; possible toxic effects.

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Safety of food additives; toxicological evaluation of food additives;
- Nitroso-compounds, heterocyclic amines, dietary supplements and toxicity related to dose
- Common dietary supplements; relevance of the dose; possible toxic effects.

Course Outcomes

By the end of course

• Student will gain knowledge on principles of toxicity and characteristics of toxins and their classification. Examination and prevention of toxins in foods and etc.

TEXT BOOKS

- 1. Helferich, W., and Winter, C.K "Food Toxicology", CRC Press, LLC. Boca Raton, FL. 2007.
- 2. Shibamoto, T., and Bjeldanes, L. "Introduction to Food Toxicology", 2009, 2nd Edition. Elsevier Inc., Burlington, MA.
- 3. Watson, D.H. "Natural Toxicants in Food", CRC Press, LLC. Boca Raton, FL1998.

REFERENCES

- 1. Duffus, J.H., and Worth, H.G. J. "Fundamental Toxicology", The Royal Society of Chemistry. 2006.
- Stine, K.E., and Brown, T.M. "Principles of Toxicology", 2nd Edition. CRC Press. 2006.
- 3. Tönu, P. "Principles of Food Toxicology". CRC Press, LLC. Boca Raton, FL. 2007.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-II Sem L T P C 3 0 0 3

(19A27604b) FOOD PLANT EQUIPMENT DESIGN OPEN ELECTIVE - II

PREAMBLE

This text focuses on materials used for food plant equipment and factors considered for design of various equipment.

Course Objectives:

- To understand the material properties and codes used.
- To know the design considerations.
- To study the design of evaporators, dryers, crystallizers and etc.

UNIT – I

Materials and properties: Materials for fabrication, mechanical properties, ductility, hardness, corrosion, protective coatings, corrosion prevention linings equipment, choice of materials, material codes. Design considerations: Stresses created due to static and dynamic loads, combined stresses, design stresses and theories of failure, safety factor, temperature effects, radiation effects, effects of fabrication method, economic considerations

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Materials for fabrication, mechanical properties, ductility, hardness, corrosion, protective coatings
- Corrosion prevention linings equipment, choice of materials, material codes
- Stresses created due to static and dynamic loads, combined stresses, design stresses and theories of failure, safety factor
- Temperature effects, radiation effects, effects of fabrication method, economic considerations

UNIT – II

Design of pressure and storage vessels: Operating conditions, design conditions and stress; Design of shell and its component, stresses from local load and thermal gradient, mountings and

accessories. Design of heat exchangers: Design of shell and tube heat exchanger, plate heat exchanger, scraped surface heat exchanger, sterilizer and retort

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Design of pressure and storage vessels includes operating conditions, design conditions and stress
- Design of shell and its component, stresses from local load and thermal gradient, mountings and accessories
- Design of heat exchangers like shell and tube heat exchanger, plate heat exchanger, scraped surface heat exchanger, sterilizer and retort

UNIT – III

Design of evaporators and crystallizers: Design of single effect and multiple effect evaporators and its components; Design of rising film and falling film evaporators and feeding arrangements for evaporators; Design of crystallizer and entrainment separator

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Design of evaporators like single effect and multiple effect evaporators and its components; rising film and falling film evaporators and feeding arrangements for evaporators;
- Design of crystallizer and entrainment separator

UNIT – IV

Design of agitators and separators: Design of agitators and baffles; Design of agitation system components and drive for agitation. Design of centrifuge separator; Design of equipment components, design of shafts, pulleys, bearings, belts, springs, drives, speed reduction systems. Design of freezing equipment: Design of ice-ream freezers and refrigerated display system

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Design of agitators and baffles like Design of agitation system components and drive for agitation.
- Design of centrifuge separator like equipment components, design of shafts, pulleys, bearings, belts, springs, drives, speed reduction systems.

• Design of freezing equipment like ice-ream freezers and refrigerated display system

$\mathbf{UNIT} - \mathbf{V}$

Design of dryers: Design of tray dryer, tunnel dryer, fluidized dryer, spray dryer, vacuum dryer, freeze dryer and microwave dryer. Design of extruders: Cold and hot extruder design, design of screw and barrel, design of twin screw extruder. Design of fermenters: Design of fermenter vessel, design problems

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Design of dryers like tray dryer, tunnel dryer, fluidized dryer, spray dryer, vacuum dryer, freeze dryer and microwave dryer
- Design of extruders like Cold and hot extruder design, design of screw and barrel, design of twin screw extruder.
- Design of fermenter vessel, design problems

Course Outcomes

By the end of the course, the students will

• acquires knowledge on theoretical aspects to be design considerations for a food plant equipment and designing of evaporators, separators, storage vessels and etc.

TEXT BOOKS

- 1. Antonio Lopez-Gomez, Gustavo V. Barbosa-Canovas, "Food plant design", CRC press 2005.
- 2. George D. Saravacos and Zacharias B. Maroulis, "Food Plant Economics", CRC Press 2007.

REFERENCES

- 1. Peters M., Timmerhaus K. & Ronald W., "Plant Design & Economics for Chemical Engineers", McGraw Hill.
- 2. James R Couper, "Process Engg. Economics (Chemical Industries) CRC Press 3. Aries & Newton, Chemical Engg. Cost Estimation", McGraw Hill.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-II Sem L T P C 3 0 0 3

(19A54604a) WAVELET TRANSFORMS AND ITS APPLICATIONS

OPEN ELECTIVE-II

Course Objective:

This course provides the students to understand Wavelet transforms and its applications.

UNIT-I-

Wavelets

Wavelets and Wavelet Expansion Systems - Wavelet Expansion- Wavelet Transform- Wavelet System- More Specific Characteristics of Wavelet Systems -Haar Scaling Functions and Wavelets -effectiveness of Wavelet Analysis -The Discrete Wavelet Transform The Discrete-Time and Continuous Wavelet Transforms.

Learning Outcomes:

Students will be able to

- Understand wavelets and wavelet expansion systems.
- Find wavelet transforms in continuous as well as discrete domains.

UNIT-II-

A Multiresolution Formulation of Wavelet Systems

Signal Spaces -The Scaling Function -Multiresolution Analysis - The Wavelet Functions - The Discrete Wavelet Transform- A Parseval's Theorem - Display of the Discrete Wavelet Transform and the Wavelet Expansion.

Learning Outcomes:

Students will be able to

- Illustrate the multi resolution analysis, scaling function.
- Implement parseval theorem.

UNIT-III-

Filter Banks and the Discrete Wavelet Transform : Analysis - From Fine Scale to Coarse Scale-Filtering and Down-Sampling or Decimating -Synthesis - From Coarse Scale to Fine

Scale -Filtering and Up-Sampling or Stretching - Input Coefficients - Lattices and Lifting - - Different Points of View.

Learning Outcomes:

Students will be able to

- Form fine scale to coarse scale analysis.
- Perform decimating synthesis.
- Find the lattices and lifting.

UNIT-IV

Multiresolution versus Time-Frequency Analysis- Periodic versus Nonperiodic Discrete Wavelet Transforms -The Discrete Wavelet Transform versus the Discrete-Time Wavelet Transform-Numerical Complexity of the Discrete Wavelet Transform.

Learning Outcomes:

Students will be able to

- Perform multi resolution versus time frequency analysis.
- Perform numerical complexity of discrete wavelet transforms.

UNIT-V

Bases, Orthogonal Bases, and Biorthogonal Bases -Matrix Examples - Fourier Series Example -Sine Expansion Example - Frames and Tight Frames - Matrix Examples -Sine Expansion as a Tight Frame Example.

Learning Outcomes:

Students will be able to

- Understand the orthogonal bases and Biorthogonal Bases.
- Find the Frames and Tight Frames using Fourier series.

Course Outcomes:

After the completion of course, students will be able to

- Understand wavelets and wavelet expansion systems.
- Illustrate the multi resolution analysis ad scaling functions.
- Form fine scale to coarse scale analysis.
- Find the lattices and lifting.
- Perform numerical complexity of discrete wavelet transforms.
- Find the frames and tight frames using fourier series.

TEXT BOOKS:

- 1. C. Sidney Burrus, Ramesh A. Gopinath, "Introduction to Wavelets and Wavelets Transforms", Prentice Hall, (1997).
- 2. James S. Walker, "A Primer on Wavelets and their Scientific Applications", CRC Press, (1999).

REFERENCE BOOKS:

1. Raghuveer Rao, "Wavelet Transforms", Pearson Education, Asia.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-II Sem L T P C 3 0 0 3

(19A52604a) SOFT SKILLS (OPEN ELECTIVE-II)

Course Objectives

- To develop awareness in students of the relevance and importance of soft skills
- To provide students with interactive practice sessions to make them internalize soft skills
- To develop Time management, Positive thinking & Decision making skills
- To enable to manage stress effectively
- To enable them to develop employability skills

SYLLABUS

UNIT – I

INTRODUCTION

Definition – Scope – Importance – Methods of improving soft skills – Limits – Analysis – Interpersonal and intrapersonal skills - Verbal and Non-verbal skills.

Learning Outcomes:

At the end of the module, the learners will be able to

- Understand the importance of soft skills
- Identify the methods of improving soft skills
- Analyze various soft skills in different situations
- Distinguish various soft skills
- Apply various soft skills in day to day life and in workplace

UNIT – II INTRAPERSONAL SKILLS

Knowing self/temperaments/traits - Johari windows – quotient skills(IQ, EQ, SQ), creativity, decision-making-Attitude – Confidence Building - Positive Thinking –Time Management – Goal setting.

Learning Outcomes:

At the end of the module, the learners will be able to

- Understand self and its temperament.
- Apply various techniques to know the self.
- Develop positive thinking
- Develop creative thinking and decision-making skills
- Apply self-knowing tools in day to day and professional life.

UNIT – III

INTERPERSONAL SKILLS

Leadership Skills – Negotiation skills – Team-building – Crisis Management – Event Management –Ethics and Etiquettes.

Learning Outcomes:

At the end of the module, the learners will be able to

- Understand the importance of interpersonal skills
- Analyze various tactics in negotiation skills.
- Develop team building spirit.
- Develop crisis management
- Apply interpersonal skills through etiquettes.

$\mathbf{UNIT}-\mathbf{IV}$

VERBAL SKILLS

Importance of verbal skills in corporate climate, Listening skills –Mother Tongue Influence (MTI) - Speaking skills – Public speaking - Oral presentations - Writing skills –E-mail etiquettes – Memos - Indianism

Learning Outcomes:

At the end of the module, the learners will be able to

- Understand the importance of verbal skills in corporate climate.
- Explain the need of listening skills.
- Explore MTI and suggest remedies to avoid it.

- Interpret various contexts of speaking.
- Apply verbal skills in personal and professional life.

UNIT - V NON-VERBAL SKILLS

Importance of body language in corporate culture – body language-Facial expressions – eye contact – posture – gestures – Proxemics – Haptics – Dress Code – Paralanguage –Tone, pitch, pause& selection of words

Learning Outcomes:

At the end of the module, the learners will be able to

- Comprehend the importance of non-verbal communication.
- Expound the need of facial expressions, postures and gestures.
- Analyze proxemics, haptics etc.
- Understand the importance of dress code.
- Apply various techniques to use para language

Course Outcomes

- Recognize the importance of verbal and non verbal skills
- Develop the interpersonal and intrapersonal skills
- Apply the knowledge in setting the SMART goals and achieve the set goals
- Analyze difficult situations and solve the problems in stress-free environment
- Create trust among people and develop employability skills

Text Books

- 1. Meenakshi Raman & Shalini Upadhyay "Soft Skills", Cengage Learning, 2018.
- 2. S. Balasubramaniam, "Soft Skills for Interpersonal Communication", Orient Black Swan, 2017.

References

- 1. Barun K. Mitra, "Personality Development and Soft Skills", -OXFORD Higher Education 2018.
- 2. AlkaWadkar, "Life Skills for Success", Sage Publications 2016.
- 3. Robert M Sheffield, "Developing Soft Skills", Pearson, 2010.
- 4. DianaBooher, "Communicate With Confidence", Tata McGrawhill, 2012.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)–III-II L T P C 3 0 0 3

HUMANITIES ELECTIVE-I

(19A52602a) ENTREPRENEURSHIP & INCUBATION

COURSE OBJECTIVES :

The objective of this course is

- To make the student understand about Entrepreneurship
- To enable the student in knowing various sources of generating new ideas in setting up of New enterprise
- To facilitate the student in knowing various sources of finance in starting up of a business
- To impart knowledge about various government sources which provide financial assistance to entrepreneurs/ women entrepreneurs
- To encourage the student in creating and designing business plans

Syllabus

UNIT-I

Entrepreneurship - Concept, knowledge and skills requirement - Characteristics of successful entrepreneurs - Entrepreneurship process - Factors impacting emergence of entrepreneurship - Differences between Entrepreneur and Intrapreneur - Understanding individual entrepreneurial mindset and personality - Recent trends in Entrepreneurship.

Learning Outcomes:

At the end if the Unit, the learners will be able to

- Understand the concept of Entrepreneur and Entrepreneurship in India
- Know Entrepreneurship process and emergence of Entrepreneurship
- Analyze the differences between Entrepreneur and Intrapreneur
- Develop a creative mind set and personality
- Understand recent trends in Entrepreneurship across the globe

UNIT-II

Starting the New Venture - Generating business idea – Sources of new ideas & methods of generating ideas - Opportunity recognition - Feasibility study - Market feasibility, technical/operational feasibility - Financial feasibility - Drawing business plan - Preparing project report - Presenting business plan to investors.

Learning Outcomes:

At the end if the Unit, the learners will be able to

- Know the process of starting a new venture
- Analyze the sources of new methods in generating business idea
- Evaluate market feasibility, financial feasibility and technical feasibility
- Design and draw business plans in project preparation and prepare project reports

UNIT-III

Sources of finance - Various sources of Finance available - Long term sources - Short term sources - Institutional Finance – Commercial Banks, SFC's in India - NBFC's in India - their way of financing in India for small and medium business - Entrepreneurship development programs in India - The entrepreneurial journey- Institutions in aid of entrepreneurship development

Learning Outcomes:

At the end of the Unit, the learners will be able to

- Know the various sources of finance to start a new venture
- Contrast & compare between Long term & Short term finance sources
- Analyze the role of banks and other financial institutions in promoting entrepreneurship in India
- Evaluate the need and importance of MSMEs in the growth of country

UNIT-IV

Women Entrepreneurship - Entrepreneurship Development and Government - Role of Central Government and State Government in promoting women Entrepreneurship - Introduction to various incentives, subsidies and grants – Export- oriented Units - Fiscal and Tax concessions available - Women entrepreneurship - Role and importance - Growth of women entrepreneurship in India - Issues & Challenges - Entrepreneurial motivations.

Learning Outcomes:

At the end of the Unit, the learners will be able to

- Understand the role of government in promoting women entrepreneurship
- Know various incentives, subsidies and grants available to women entrepreneurs
- Analyze the role of export-oriented units
- Know about the tax concessions available for Women entrepreneurs
- Prepare to face the issues and challenges.

UNIT-V

Fundamentals of Business Incubation - Principles and good practices of business incubation-Process of business incubation and the business incubator and how they operate and influence the Type/benefits of incubators - Corporate/educational / institutional incubators - Broader business incubation environment - Pre-Incubation and Post - Incubation process - Idea lab, Business plan structure - Value proposition

Learning Outcomes:

At the end of the Unit, the learners will be able to:

- Understand the importance of business incubation
- Apply brilliant ideas in the process of business incubation
- Analyze the process of business incubation/incubators.
- Contrast & Compare between business incubation and business incubators.
- Design their own business incubation/incubators as viable-business unit.

Course Outcomes:

At the end of the course, students will be able to

- Understand the concept of Entrepreneurship and challenges in the world of competition.
- Apply the Knowledge in generating ideas for New Ventures.
- Analyze various sources of finance and subsidies to entrepreneur/women Entrepreneurs.
- Evaluate the role of central government and state government in promoting Entrepreneurship.
- Create and design business plan structure through incubations.

TEXT BOOKS

- 1. D F Kuratko and T V Rao, "Entrepreneurship" A South-Asian Perspective Cengage Learning, 2012. (For PPT, Case Solutions Faculty may visit : login.cengage.com)
- 2. Nandan H, "Fundamentals of Entrepreneurship", PHI, 2013

REFERENCES

- 1. Vasant Desai, "Small Scale Industries and Entrepreneurship", Himalaya Publishing 2012.
- 2. Rajeev Roy "Entrepreneurship", 2nd Edition, Oxford, 2012.
- 3. B.Janakiramand M.Rizwanal "Entrepreneurship Development: Text & Cases", Excel Books, 2011.
- 4. Stuart Read, Effectual "Entrepreneurship", Routledge, 2013.

E-RESOURCES

- 1. Entrepreneurship-Through-the-Lens-of-enture Capital
- 2. http://www.onlinevideolecture.com/?course=mba-programs&subject=entrepreneurship
- 3. http://nptel.ac.in/courses/122106032/Pdf/7_4.pd
- 4. http://freevideolectures.com/Course/3514/Economics-/-Management-/-Entrepreneurhip/50

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-II L T P C 3 0 0 3

(19A52602b) MANAGERIAL ECONOMICS AND FINANCIAL ANALYSIS

Course Objectives :

The objective of this course is

- To inculcate the basic knowledge of micro economics and financial accounting
- To make the students learn how demand is estimated for different products, inputoutput relationship for optimizing production and cost
- To know the various types of Market Structures & pricing methods and its strategies
- To give an overview on investment appraisal methods to promote the students to learn how to plan long-term investment decisions.
- To provide fundamental skills on Accounting and to explain the process of preparing Financial statements

Syllabus

UNIT I -

INTRODUCTION TO MANAGERIAL ECONOMICS DEMAND

Managerial Economics – Definition – Nature & Scope - Contemporary importance of Managerial Economics - Demand Analysis - Concept of Demand - Demand Function - Law of Demand - Elasticity of Demand - Significance - Types of Elasticity - Measurement of Elasticity of Demand - Demand Forecasting - Factors governing Demand Forecasting - Methods of Demand Forecasting - Relationship of Managerial Economics with Financial Accounting and Management.

Learning Outcomes:

At the end of the Unit, the learners will be able to

- Know the nature and scope of Managerial Economics and its importance
- Understand the concept of demand and its determinants
- Analyze the Elasticity and degree of elasticity
- Evaluate Demand forecasting methods
- Design the process of demand estimation for different types of demand

UNIT -II

THEORY OF PRODUCTION AND COST ANALYSIS

Production Function – Least-cost combination - Short-run and Long-run Production Function -Isoquants and Isocosts, MRTS - Cobb-Douglas Production Function - Laws of Returns - Internal and External Economies of scale – **Cost & Break Even Analysis** - Cost concepts and Cost behavior - Break-Even Analysis (BEA) - Determination of Break-Even Point (Simple Problems) - Managerial significance and limitations of Break-Even Analysis.

Learning Outcomes:

At the end of the Unit, the learners will be able to

- Know the production function, Input-Output relationship and different cost concepts
- Apply the least-cost combination of inputs
- Analyze the behavior of various cost concepts
- Evaluate BEA for real time business decisions
- Develop profit appropriation for different levels of business activity

UNIT –III

INTRODUCTION TO FORMS OF BUSINESS ORGANIZATIONS AND MARKETS

Market structures - Forms of Business Organizations - Sole Proprietorship - Partnership - Joint Stock Companies - Public Sector Enterprises-Types of Markets - Perfect and Imperfect Competition - Features of Perfect Competition – Monopoly - Monopolistic Competition – Oligopoly - Price-Output Determination - Pricing Methods and Strategies.

Learning Outcomes:

At the end of the Unit, the learners will be able to

- Know the structure of markets, features of different markets and forms of business organizations
- Apply the price output relationship in different markets
- Analyze the optimum output levels to maximize profit in different markets
- Evaluate price-output relationship to optimize cost, revenue and profit
- Interpret Pricing Methods and Strategies

UNIT -IV

CAPITAL AND CAPITAL BUDGETING Concept of Capital - Significance - Types of Capital - Components of Working Capital - Sources of Short-term and Long-term Capital -

Estimating Working capital requirements – Cash Budget - **Capital Budgeting** – Features of Capital Budgeting Proposals – Methods and Evaluation of Capital Budgeting Projects – Pay Back Method – Accounting Rate of Return (ARR) – Net Present Value (NPV) – Internal Rate Return (IRR) Method (simple problems)

Learning Outcomes:

At the end of the Unit, the learners will be able to

- Know the concept of capital budgeting and its importance in business
- Contrast and compare different investment appraisal methods
- Analyze the process of selection of investment alternatives using different appraisal methods
- Evaluate methods of capital budgeting for investment decision making and for maximizing returns
- Design different investment appraisals and make wise investments

UNIT –V

INTRODUCTION TO FINANCIAL ACCOUNTING AND ANALYSIS

Accounting Concepts and Conventions - Introduction Double-Entry Book Keeping, Journal, Ledger, Trial Balance - Final Accounts (Trading Account, Profit and Loss Account and Balance Sheet with simple adjustments). *Financial Analysis* - Analysis and Interpretation of Liquidity Ratios, Activity Ratios, and Capital structure Ratios and Profitability.

Learning Outcomes:

At the end of the Unit, the learners will be able to

- Know the concept, convention and significance of accounting
- Apply the fundamental knowledge of accounting while posting the journal entries
- Analyze the process and preparation of final accounts and financial ratios
- Evaluate the financial performance of an enterprise by using financial statements

Data Books Required:

Present Value Factors table

Course Outcomes:

At the end of the course, students will be able to

- Understand the fundamentals of Economics viz., Demand, Production, cost, revenue and markets
- Apply concepts of production, cost and revenues for effective business decisions
- Students can analyze how to invest their capital and maximize returns
- Evaluate the capital budgeting techniques

• Prepare the accounting statements and evaluate the financial performance of business entity.

TEXT BOOKS:

- 1. Varshney & Maheswari: "Managerial Economics", Sultan Chand, 2013.
- 2. Aryasri: "Business Economics and Financial Analysis", 4th edition, MGH, 2019

REFERENCES:

- 1. Ahuja Hl "Managerial economics" 3rd edition, Schand, ,2013
- 2. S.A. Siddiqui and A.S. Siddiqui: "Managerial Economics and Financial Analysis", New Age International, 2013.
- 3. Joseph G. Nellis and David Parker: "Principles of Business Economics", 2nd edition, Pearson, New Delhi.
- 4. Domnick Salvatore: "Managerial Economics in a Global Economy", Cengage, 2013.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-II L T P C 3 0 0 3

(19A52602c) BUSINESS ETHICS AND CORPORATE GOVERNANCE

Course Objectives :

The objectives of this course are

- To make the student understand the principles of business ethics
- To enable them in knowing the ethics in management
- To facilitate the student role in corporate culture
- Impart knowledge about the fair trade practices
- Encourage the student in knowing them about the corporate governance

Syllabus

BUSINESS ETHICS AND CORPORATE GOVERNANCE

UNIT -I

Introduction – Meaning - Nature and Scope – Loyalty and Ethical Behaviour, Values across Cultures; Business Ethics – Ethical Practices inManagement. Types of Ethics – Characteristics – Factors influencing, Business Ethics – Importance of Business Ethics -Arguments for and against business ethicsBasics of business ethics Corporate Social Responsibi lity – Issues of Management – Crisis Management

Learning Outcomes:

After completion of this unit student will

- Understand the meaning of loyalty and ethical Behavior
- Explain various types of Ethics
- Know about the factors influencing business ethics
- Understand the corporate social responsibility of management

UNIT –II ETHICS IN MANAGEMENT

Introduction – Ethics in HRM – Marketing Ethics – Ethical aspects of Financial Management-Technology Ethics and Professional ethics. The Ethical Value System – Universalism, Utilitarianism, Distributive Justice, Social Contracts, Individual Freedom of Choice, Professional Codes; Culture and Ethics – Ethical Values in different Cultures, Culture and Individual Ethics.

Learning Outcomes:

After completion of this unit student will

- Understand the meaning of Marketing Ethics
- Analyze Differentiate between Technical ethics and professional ethics
- Know about the ethical value system
- Understand the Code and culture

UNIT-III

ROLE OF CORPORATE CULTURE IN BUSINESS

Meaning – Functions – Impact of corporate culture – cross cultural issues in ethics, Emotional Honesty – Virtue of humility – Promote happiness – karma yoga – proactive – flexibility and purity of mind. The Ethical Value System – Universalism, Utilitarianism, Distributive Justice, Social Contracts, Individual Freedom of Choice, Professional Codes; Culture and Ethics – Ethical Values in different Cultures, Culture and Individua Ethics.

Learning Outcomes:

After completion of this unit student will

- Understand the corporate culture in business
- Analyze Ethical Value System Know about the ethical value system
- Know Universalism, Utilitarianism, Distributive Justice
- Differentiate Ethical Values in different Cultures

UNIT- IV

Law and Ethics – Relationship between Law and Ethics, Other Bodies in enforcing Ethical Business Behavior, Social Responsibilities of Business – Environmental Protection, Fair Trade Practices, Fulfilling all Nation Safeguarding Health and wellbeing of Customers.

Learning Outcomes:

After completion of this unit student will

- Understand Law and Ethics
- Analyze Social Responsibilities of Business
- Know Environmental Protection and Fair Trade Practices
- Implementing National Safeguarding Health and wellbeing of Customers

UNIT –V

CORPORATE GOVERNANCE

Meaning – scope - Issues, need, corporate governance code, transparency & disclosure, role of auditors, board of directors and shareholders; Global issues of governance, accounting and regulatory frame work, corporate scams, committees in India and abroad, corporate social responsibility composition of BODs - Cadbury Committee - various committees - reports on corporate governance - Benefits and Limitations of Corporate Governance with living examples.

Learning Outcomes:

After completion of this unit student will

- Understand corporate governance code
- Analyze role of auditors, board of directors and shareholders
- Know accounting and regulatory frame work
- Implementing corporate social responsibility

Course Outcomes:

At the end of the course, students will be able to

- Understand business ethics and ethical practices in management.
- Understand the role of ethics in management
- Apply the knowledge in cross cultural ethics
- Analyze law and ethics
- Evaluate corporate governance

TEXT BOOKS:

- 1. Murthy CSV: "Business Ethics and Corporate Governance", HPH
- 2. Bholananth Dutta, S.K. Podder "Corporation Governance", VBH.

REFERENCE BOOKS:

- 1. Dr. K. Nirmala, KarunakaraReaddy : "Business Ethics and Corporate Governance", HPH
- 2. H.R.Machiraju: "Corporate Governance"
- 3. K. Venkataramana, "Corporate Governance", SHBP.
- 4. N.M.Khandelwal : "Indian Ethos and Values for Managers"

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-II L T P C 3 0 0 3

(19A52602d) ENTERPRISE RESOURCE PLANNING

Course Objectives :

The objectives of this course are

- To provide a contemporary and forward-looking on the theory and practice of
- Enterprise Resource Planning
- To enable the students in knowing the Advantages of ERP
- To train the students to develop the basic understanding of how ERP enriches the
- Business organizations in achieving a multidimensional growth.
- Impart knowledge about the historical background of BPR
- To aim at preparing the students, technologically competitive and make them ready to self-upgrade with the higher technical skills.

Syllabus

UNIT-I

Introduction to ERP: Enterprise – An Overview Integrated Management Information, Business Modeling, Integrated Data Model Business Processing Reengineering(BPR), Data Warehousing, Data Mining, On-line Analytical Processing(OLAP), Supply Chain Management (SCM), Customer Relationship Management(CRM),

Learning Outcomes:

After completion of this unit student will

- Understand the concept of ERP
- Explain various Business modeling
- Know the contemporary technology like SCM, CRM
- Understand the OLAP

UNIT-II

Benefits of ERP: Reduction of Lead-Time, On-time Shipment, Reduction in Cycle Time, Improved Resource Utilization, Better Customer Satisfaction, Improved Supplier Performance,

Increased Flexibility, Reduced Quality Costs, Improved Information Accuracy and Designmaking Capability

Learning Outcomes:

After completion of this unit student will

- Understand the Advantages of ERP
- Explain the challenges associated with ERP System
- Analyze better customer satisfaction
- Differentiate Improved Information Accuracy and Design-making Capability

UNIT-III

ERP Implementation Lifecycle: Pre-evaluation Screening, Package Evaluation, Project Planning Phase, Gap Analysis, Reengineering, Configuration, Implementation Team Training, Testing, Going Live, End-user Training, Post-implementation (Maintenance mode)

Learning Outcomes:

After completion of this unit student will

- Understand the implementation of ERP life cycle
- Explain the challenges associated with implementing ERP system
- Analyze the need of re-engineering
- Know the recent trends in team training testing and go-live

UNIT-IV

BPR: Historical background: Nature, significance and rationale of business process reengineering (BPR), Fundamentals of BPR. Major issues in process redesign: Business vision and process objectives, Processes to be redesigned, Measuring existing processes,

Learning Outcomes:

After completion of this unit student will

- Understand the business process reengineering
- Explain the challenges associated with BPR
- Analyze the need of process redesign
- Differentiate between process to be redesign and measuring existing process

UNIT-V

IT in ERP: Role of information technology (IT) and identifying IT levers. Designing and building a prototype of the new process: BPR phases, Relationship between BPR phases. MIS - Management Information System, DSS - Decision Support System, EIS - Executive Information System.

Learning Outcomes:

After completion of this unit student will

- Understand the role of IT
- Explain the challenges in Designing and building a prototype of the new process
- Analyze the need of MIS
- Differentiate between DSS and EIS

Course outcomes:

At the end of the course, students will be able to

- Understand the basic use of ERP Package and its role in integrating business functions.
- Explain the challenges of ERP system in the organization
- Apply the knowledge in implementing ERP system for business
- Evaluate the role of IT in taking decisions with MIS
- Create reengineered business processes with process redesign

TEXT BOOKS:

- 1. Pankaj Sharma. "Enterprise Resource Planning". Aph Publishing Corporation, New Delhi, 2004.
- 2. Alexis Leon, "Enterprise Resource Planning", IV Edition, Mc.Graw Hill, 2019

REFERENCE BOOKS:

- 1. Marianne Bradford "Modern ERP", 3^{rd} edition.
- 2. "ERP making it happen Thomas f. Wallace and Michael
- 3. Directing the ERP Implementation Michael w pelphrey

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-II L T P C 3 0 0 3

(19A52602e) SUPPLY CHAIN MANAGEMENT

Course Objectives :

The objectives of this course are

- To provide Knowledge on logistics and supply chain management
- To enable them in designing the distribution network
- To train the students in knowing the supply chain Analysis
- Impart knowledge on Dimensions of logistic
- To know the recent trends in supply chain management

Syllabus

UNIT-1

Introduction to Supply Chain Management

Supply chain - objectives - importance - decision phases - process view -competitive and supply chain strategies - achieving strategic fit – supply chain drivers - obstacles – framework - facilities - inventory-transportation-information-sourcing-pricing.

Learing Outcomes:-

After completion of this unit student will

- Understand the meaning and objectives of supply chain management
- Explain supply chain drivers
- Know the steps involved in SCM frame work
- Understand transportation information and pricing

UNIT-2

Designing the distribution network

Role of distribution - factors influencing distribution - design options - e-business and its impact – distribution networks in practice –network design in the supply chain - role of network -factors affecting the network design decisions modeling for supply chain. Role of transportation - modes and their performance – transportation infrastructure and policies - design options and their trade-offs tailored transportation.

Learning Outcomes:-

After completion of this unit student will

- Understand the different distribution network
- Explain the factors influencing network design in the supply chain
- Know the Role of transportation
- Analyze design options and their trade-offs

UNIT-3

Supply Chain Analysis.

Sourcing - In-house or Outsource - 3rd and 4th PLs - supplier scoring and assessment, selection - design collaboration - Procurement process - Sourcing planning and analysis. Pricing and revenue management for multiple customers, perishable products, seasonal demand, bulk and spot contracts.

Learning Outcomes:-

After completion of this unit student will

- Understand the concept of supply chain Analysis
- Explain design collaboration
- Know procurement process -sourcing planning and analysis
- Understand seasonal demand, bulk and spot contracts

UNIT-4

Dimensions of Logistics

A macro and micro dimension - logistics interfaces with other areas - approach to analyzing logistics systems - logistics and systems analysis - techniques of logistics system analysis - factors affecting the cost and importance of logistics. Demand Management and Customer Service Outbound to customer logistics systems - Demand Management –Traditional Forecasting - CPFRP - customer service - expected cost of stock outs - channels of distribution.

Learning Outcomes:-

After completion of this unit student will

• Understand dimensions of logistics

- Explain logistics interfaces with other areas
- Know techniques of logistics system analysis
- Understand Demand Management

UNIT-5

Recent Trends in Supply Chain Management-Introduction, New Developments in Supply Chain Management, Outsourcing Supply Chain Operations, Co-Maker ship, The Role of E-Commerce in Supply Chain Management, Green Supply Chain Management, Distribution Resource Planning, World Class Supply Chain Management

Learning Outcomes:-

After completion of this unit student will

- Understand the recent trend in supply chain management
- Explain The Role of E-Commerce in Supply Management
- Know Green Supply Chain Management
- Understand Distribution Resource Planning

Course Outcomes:

At the end of the course, students will be able to

- Understand the strategic role of logistic and supply chain management in the cost reduction and offering best service to the customer
- Understand Advantages of SCM in business
- Apply the knowledge of supply chain Analysis
- Analyze reengineered business processes for successful SCM implementation
- Evaluate Recent trend in supply chain management

TEXT BOOKS:

- 1. Sunil Chopra and Peter Meindl, Supply Chain Management "Strategy, Planning and Operation", 3rd Edition, Pearson/PHI, 2007.
- 2. Supply Chain Management by Janat Shah Pearson Publication 2008.

REFERENCE BOOKS:

- 1. A Logistic approach to Supply Chain Management Coyle, Bardi, Longley, Cengage Learning, 1/e
- 2. Donald J Bowersox, Dand J Closs, M Bixby Coluper, "Supply Chain Logistics

Management", 2nd edition, TMH, 2008.

- 3. Wisner, Keong Leong and Keah-Choon Tan, "Principles of Supply Chain Management A Balanced Approach", Cengage Learning, 1/e
- 4. David Simchi-Levi et al, "Designing and Managing the Supply Chain" Concepts

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-II Sem L T P C 0 0 3 1.5

(19A04602P) DIGITAL SIGNAL PROCESSING LAB

Course Objectives:

- Students can learn the basics of using DSP chips to perform real-time digital signal processing.
- Ability to apply knowledge of mathematics, science and engineering: Construction of tools for visualizing the basic concepts of discrete signal representation such as Fourier transforms, discrete time representations.
- Students will learn numerous programming tools for design and implementations of filtering algorithms.
- Understand the concept of Multi-rate signal processing and sample rate conversion.
- Develop and Implement DSP algorithms in software using CCS with DSP floating point Processor.

Conduct any <u>eight</u> experiments from part-A and any <u>four</u> experiments from part-B

List of Experiments:

PART-A

The following experiments shall be conducted using MATLAB / Lab View / C Programming/ Equivalent software.

- 1. Generation of sinusoidal waveform / signal based on recursive difference equations.
- 2. Find DFT / IDFT of given discrete time signal.
- 3. Find frequency response of a system given in transfer function/ differential equation form.
- 4. Implementation of FFT of given Sequence.
- 5. Design and implementation of IIR filter using bilinear transformation and impulse invariant method.
- 6. Design and implementation of IIR Butterworth (LP/HP) filter.
- 7. Design and implementation of IIR Chebyshev(LP/HP) filter.
- 8. Design and implementation of FIR with low pass filter using any three windowing techniques. Plot its magnitude and phase responses.
- 9. Design and implementation of FIR filter with high passfilter using any three windowing techniques. Plot its magnitude and phase responses.
- 10. Design and implementation of FIR filter with band pass / band stopfilter using any three windowing techniques. Plot its magnitude and phase responses.

PART-B

The following experiments shall be conducted using (TI / Analog Devices / Motorola / Equivalent DSP processors).

- 11. Study the architecture of DSP chips TMS 320C 5X/6X Instructions.
- 12. Find DFT / IDFT of given discrete time signal.
- 13. Implementation of FFT of given Sequence.
- 14. Design and implementation of IIR Butterworth / Chebyshev (LP/HP) filter.
- 15. Design and implementation of FIR with low pass / high pass filter using any three windowing techniques. Plot its magnitude and phase responses.

Course Outcomes

- Ability to design-test, to verify, to evaluate, and to benchmark a real-time DSP system.
- Ability to calculate discrete time domain and frequency domain of signals using discrete Fourier series and Fourier transform.
- Ability to design, using MATLAB-based filter design techniques, FIR and IIR digital filters and Determine the frequency response of filters.
- Implementation of basic signal processing algorithms such as convolution, difference equation implementation and application of them in the construction of FIR and IIR filters.
- Design DSP based real time processing systems to meet desired needs of the society.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-II Sem L T P C 0 0 3 1.5

(19A04601P) MICROPROCESSORS AND MICROCONTROLLERS LAB

Course Objectives:

- Write ALP for arithmetic and logical operations in 8086
- Familiarize with MASM, Embedded C & Code composer studio
- Write and execute programs in 8086, 8051 and ARM Cortex M0

Conduct <u>all the experiments:</u>

List of Experiments:

Intel 8086 (16 bit Micro Processor)

- 1. Perform simple arithmetic operations using different addressing modes.
- 2. Sort an array of binary numbers.
- 3. Code Conversion (Eg. ASCII to Packed BCD form).
- 4. Addition of an array of BCD numbers stored in packed form.
- 5. Multiplying two 3x3 matrices and print on DOS
- 6. Identification & displaying the activated key using DOS & BIOS function calls.

Intel 8051 (8 bit Microcontroller)

- 1. Detection of key closure (connected to a port line) by polling technique.
- 2. Delay generation using i) Nested loop & ii) Timers.
- 3. Counting of external event occurrence through port line

ARM Cortex M0 - NXP LPC Xpress/1115

- 1. Introduction to the Keil MDK-ARM tool, C and Assembly coding Processing text in assembly language
- 2. Configure GPIO for Digital input and output
- 3. Study of mixed assembly and C programming Calling a C function from assembly and Calling an assembly function from C

Course Outcomes:

- Execution of different programs for 8086, 8051 in Assembly Level Language using MASM Assembler
- Design and implement some specific real time applications.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-II Sem L T P C 3 0 0 0

19A99501 MANDATORY COURSE: CONSTITUTION OF INDIA

COURSE OBJECTIVES : The objective of this course is

- To Enable the student to understand the importance of constitution
- To understand the structure of executive, legislature and judiciary
- To understand philosophy of fundamental rights and duties
- To understand the autonomous nature of constitutional bodies like Supreme Court and high court controller and auditor general of India and Election Commission of India.
- To understand the central-state relation in financial and administrative control

Syllabus

UNIT-I

Introduction to Indian Constitution – Constitution -Meaning of the term - Indian Constitution-Sources and constitutional history - Features– Citizenship – Preamble - Fundamental Rights and Duties - Directive Principles of State Policy.

Learning Outcomes:-

After completion of this unit student will

- Understand the concept of Indian constitution
- Apply the knowledge on directive principle of state policy
- Analyze the History and features of Indian constitution
- Learn about Preamble, Fundamental Rights and Duties

UNIT-II

Union Government and its Administration Structure of the Indian Union - Federalism - Centre-State relationship – President's Role, power and position - PM and Council of ministers -Cabinet and Central Secretariat –Lok Sabha - Rajya Sabha - The Supreme Court and High Court - Powers and Functions

Learning Outcomes:-

After completion of this unit student will

- Understand the structure of Indian government
- Differentiate between the state and central government
- Explain the role of President and Prime Minister
- Know the Structure of supreme court and High court

UNIT-III

State Government and its Administration - Governor - Role and Position -CM and Council of ministers - State Secretariat-Organization Structure and Functions

Learning Outcomes:-

After completion of this unit student will

- Understand the structure of state government
- Analyze the role of Governor and Chief Minister
- Explain the role of State Secretariat
- Differentiate between structure and functions of state secretariat

UNIT-IV

Local Administration - District's Administration Head - Role and Importance - Municipalities - Mayor and role of Elected Representatives -CEO of Municipal Corporation Pachayati Raj - Functions- PRI –Zilla Parishath - Elected officials and their roles – CEO,Zilla Parishath - Block level Organizational Hierarchy - (Different departments) - Village level - Role of Elected and Appointed officials - Importance of grass root democracy

Learning Outcomes:-

After completion of this unit student will

- Understand the local Administration
- Compare and contrast district administration's role and importance
- Analyze the role of Mayor and elected representatives of Municipalities
- Learn about the role of Zilla Parishath block level organization

UNIT-V

Election Commission - Election Commission- Role of Chief Election Commissioner and Election Commissionerate - State Election Commission -Functions of Commissions for the welfare of SC/ST/OBC and Women

Learning Outcomes:-

After completion of this unit student will

- Know the role of Election Commission
- Contrast and compare the role of Chief Election commissioner and Commissionerate
- Analyze the role of state election commission
- Evaluate various commissions viz SC/ST/OBC and women

Course Outcomes:

At the end of the course, students will be able to

- Understand historical background of the constitution making and its importance for building a democratic India.
- Understand the functioning of three wings of the government ie., executive, legislative and judiciary.
- Understand the value of the fundamental rights and duties for becoming good citizen of India.
- Analyze the decentralization of power between central, state and local selfgovernment
- Apply the knowledge in strengthening of the constitutional institutions like CAG, Election Commission and UPSC for sustaining democracy.

TEXT BOOKS

- 1. Durga Das Basu, "Introduction to the Constitution of India", Prentice Hall of India Pvt. Ltd.. New Delhi
- 2. Subash Kashyap, "Indian Constitution", National Book Trust

REFERENCES:

- 1. J.A. Siwach, "Dynamics of Indian Government & Politics".
- 2. H.M.Sreevai, "Constitutional Law of India", 4th edition in 3 volumes (Universal Law Publication)
- 3. J.C. Johari, "Indian Government and Politics", Hans India

4. M.V. Pylee, "Indian Constitution", Durga Das Basu, Human Rights in Constitutional Law, Prentice – Hall of India Pvt. Ltd.. New Delhi

E-RESOURCES:

- 1. nptel.ac.in/courses/109104074/8
- 2. nptel.ac.in/courses/109104045/
- 3. nptel.ac.in/courses/101104065/
- 4. www.hss.iitb.ac.in/en/lecture-details
- $5. \ www.iitb.ac.in/en/event/2nd-lecture-institute-lecture-series-indian-constitution$