

		Semester-III					
S.No.	Course Code	Course Name	Category	Hour	s per we	ek	Credits
				L	T	P	=
1.	20A54402	Numerical Methods and Probability Theory	BS	3	0	0	3
2.	20A27301	Food Chemistry	PC	3	0	0	3
3.	20A27302T	Processing of Cereals, Pulses and Oilseeds	PC	3	0	0	3
4.	20A27303T	Fluid Flow in Food Processing	PC	3	0	0	3
5.	20A27304	Principles of Food Engineering	PC	3	0	0	3
6.	20A27305	Food Analysis Lab	PC	0	0	3	1.5
7.	20A27302P	Processing of Cereals, Pulses and Oilseeds Lab	PC	0	0	3	1.5
8.	20A27303P	Fluid Flow in Food Processing Lab	PC	0	0	3	1.5
9.	20A27306	Skill oriented course – I Principles of Food Preservation	SC	1	0	2	2
10.	20A99201	Mandatory noncredit course – II Environmental Science	MC	3	0	0	0
	1	,	r	Γotal		1	21.5

Se	mes	ter	·-IV	7

S.No.	Course Code	e Course Name	Category	Hour	s per w	eek	Credits
				L	T	P	
1.	20A27401	Food Biochemistry and Nutrition	BS	3	0	0	3
2.	20A05406T	Introduction to Python Programming	ES	3	0	0	3
3.	20A27402T	Processing of Fruits and Vegetables, Spices and Plantation Crops	PC	3	0	0	3
4.	20A27403T	Heat and Mass Transfer	PC	3	0	0	3
5.	20A52301	Humanities Elective - I Managerial Economics & Financial Analysis	HS	3	0	0	3
	20A52302 20A52303	Organizational Behavior Business Environment					
6.	20A05301P	Python Programming Lab	ES	0	0	3	1.5
7.	20A27402P	Processing of Fruits and Vegetables, Spices and Plantation Crops Lab	PC	0	0	3	1.5
8.	20A27403P	Heat and Mass Transfer Lab	PC	0	0	3	1.5
9.	20A27404	Skill oriented course – I Basic Microbiology	SC	1	0	2	2
10.	20A99401	Mandatory noncredit course – III Design Thinking for Innovation	MC	2	1	0	0
11.	20A99301	NSS/NCC/NSO Activities	-	0	0	2	0
	,	•	•			Total	21.5

Food Technology

Community Service Internship/Project(Mandatory) for 6 weeks duration during summer vacation

Note:

- 1. Eligible and interested students can register either for Honors or for a Minor in IV Semester as per the guidelines issued by the University
- 2. Students shall register for NCC/NSS/NSO activities and will be required to participate in an activity for two hours in a week during fourth semester.
- 3. Lateral entry students shall undergo a bridge course in Mathematics during third semester

Course Code	Numerical Methods & Probability	y theory	L	T	P	C
20A54402	(Food Technology)		3	0	0	3
	B.Tech II Year					
Pre-requisite		Semester	III			
Course Objectives:						
This course aims at p	providing the student with the knowledge on					
 Various num 	nerical methods for solving equations, interp	olating the poly	nomi	als, e	valua	ıtio
of integral eq	quations and solution of differential equations	s.				
• The theory o	f probability and random variables.					
Course Outcomes (C	O): Student will be able to					
 Apply numer 	rical methods to solve algebraic and transcen-	dental equations				
 Derive interp 	polating polynomials using interpolation form	nulae				
 Solve differe 	ential and integral equations numerically					
 Apply proba 	bility theory to find the chances of happening	g of events.				
 Understand v 	various probability distributions and calculate	e their statistical	const	ants.		
UNIT - I	Solution of Algebraic & Transcendental		8 H			
Introduction-Bisection	on method-Iterative method-Regula falsi metl	-	hson	meth	nod	
	equations: Gauss Jordan method-Gauss Sied					
UNIT - II	Interpolation		8 H	rs		
Finite differences-Ne	ewton's forward and backward interpolation	formulae – Las	grang	e's	form	ulae
	ackward formula, Stirling's formula, Bessel	•	, ,			
UNIT - III	Numerical Integration & Solution of	Initial value	9 H	rs		
	problems to Ordinary differential equation	ons				
Numerical Integratio	n: Trapezoidal rule – Simpson's 1/3 Rule – S	Simpson's 3/8 R	ule			
Numerical solution of	of Ordinary Differential equations: Solution	by Taylor's serie	es-Pi	card'	s Me	tho
of successive Approx	timations-Modified Euler's Method-Runge-F	Kutta Methods.				
UNIT - IV	Probability theory:		9 H			
• •	lity axioms, addition law and multiplication	-		-		
	theorem, random variables (discrete and	d continuous), 1	proba	bility	y dei	ısit
functions, properties,	mathematical expectation.					
UNIT - V	Random variables & Distributions:		9 H	rs		
OTHE !	AMMANII THIRING & PISHINGHOMS.					
Probability distribut	ion - Binomial, Poisson approximation to th	 ne binomial distr	ibutio	on ar	nd no	rma
•	perties-Uniform distribution-exponential dist		- 5.01	•••		

Food Technology

Textbooks:

- 1. Higher Engineering Mathematics, B.S.Grewal, Khanna publishers.
- 2. Probability and Statistics for Engineers and Scientists, Ronald E. Walpole, PNIE.
- 3. Advanced Engineering Mathematics, by Erwin Kreyszig, Wiley India

Reference Books:

- 1. Higher Engineering Mathematics, by B.V.Ramana, Mc Graw Hill publishers.
- 2. Advanced Engineering Mathematics, by Alan Jeffrey, Elsevier.

Online Learning Resources:

- 1. https://onlinecourses.nptel.ac.in/noc17_ma14/preview
- 2. nptel.ac.in/courses/117101056/17
- 3. http://nptel.ac.in/courses/111105090

Food Technology

Course Code	FOOD CHEMIST	RY	L	Т	Р	C
20A27301			3	0	0	3
Pre-requisite		Semester			III	
1						
Course Objectives:						
To impart kn	owledge to the students on the Techr	niques in food analys	is			
To read them	n with the Analytical techniques in Q	uality control laborat	tory.			
Course Outcomes (CO):					
Understand th	ne concepts of Techniques in food and	alysis,				
 Analyse the proximate analysis of foods 						
Summarize th	e biochemical methods and approach	nes used in Food anal	lysis.			
UNIT - I					8	Hrs
Sampling and samp	ling techniques. Proximate analysis	- Moisture, ash, cri	ude fat	, crud	e fibre	e, crude
protein and carbohyd	lrates by difference. Principles and m	ethods of food analy	sis.			
UNIT - II					12	2 Hrs
Basic principles:	Refractometry, polarimetry, density	itometry, HPLC,	GLC,	spect	rophot	ometry,
electrophoresis, auto	matic amino acid analyzer.					
UNIT - III					8	Hrs
Determination of star	rch. Test for unsaturation of fats, rand	cidity of fats. Quantit	tative a	nalysis	of pro	otein by
Biuret method, Ninl	hydrin method, Lowry's method ar	nd Dye-binding met	hod B	oassay	ys for	protein
quality of grains.						
UNIT - IV					10	0 Hrs
Chemical, microbiol	ogical, flurometric and colorimetric	methods of analysis	is of fa	t solu	ble an	d water
soluble vitamins.						

UNIT - V 8 Hrs

Principles and methods for estimation of minerals: Atomic absorption spectroscopy, colorimetric, titrimetric and gravimetric methods Methods for determining physical and rheological properties of food.

Textbooks:

- 1. Suzanne **Nielsen**, "Food Analysis", Springer Publishers, 5th Edition, 2017.
- 2. Y. Pomeranz and C.E. Meloan, "Food Analysis", A.V.I Publishing Company, INC West Port, Connecticut, U.S.A.

- 1. Plummer, D.T. "An Introduction to Practical Biochemistry", Tata Mc Graw-Hill Publishing Co., New Delhi.2079.
- 2. Sadasivam, S. and Manickam, A. "Biochemical methods for Agricultural Sciences", New Age International Publisher, New Delhi, 2096.
- 3. ManoRanjanKalia "Food Analysis and Quality Control", 1st Edition, Kalyani Publishers, New Delhi, 2002.
- 4. Jayaraman, J. "Laboratory Manual in Biochemistry", Wiley Eastern Publishers, New Delhi, 2080.

Food Technology

Course Code	PROCESSING OF CEREALS, PULSES &		L	T	P	С
20A27302T	OILSEEDS		3	0	0	3
Pre-requisite		Semester		III		

Course Objectives:

- To learn about the processing of major cereals and pulses.
- To gain knowledge about grain storage structure and handling devices.

Course Outcomes (CO):

- Students will get information about the classification of various grains
- Students also exposed to various processing methods and machinery used
- Students will learn value added products from all grains

UNIT - I 8 Hrs

Importance of Cereals Pulses and Oilseeds, Composition, Structure and processing characteristics of Cereal grains, Legumes and Oilseeds, Post-harvest technology, Post processing practices for safe storage. Rice: Structure, types, composition, quality characteristics and physicochemical properties of Rice. Milling and parboiling of paddy, Curing and ageing of paddy and rice. Criteria and assessment of milling, cooking, nutritional and storage qualities of raw & parboiled rice. Processed rice products (flaked, expanded and puffed rice), By-products.

UNIT - II

Wheat-Structure, Composition, Types, quality characteristics for milling into flour and Semolina. Flour milling, Turbo grinding and air classification, Blending of flours, Flour grades and their suitability for baking purposes, Milling equipment and milled products (Dalia, Atta, Semolina and flour). Assessment of flour quality and characteristics, Macaroni products. Dough rheology- influence of flour constituents in dough rheology.

Baked products-Ingredients Technology and quality parameters: Bread, Biscuits, Cakes and Crackers.

IINIT - III

Other Cereals: Corn- Structure, types and composition. Dry and wet milling of Corn. Starch and conversion products. Processed corn products (popped corn, corn flakes etc.) Structure and composition of Barley, Malting of barley, Bajra, Jowar and other cereal grains and millets. Pearling of millets. Parched and snack products. Breakfast cereals – types and manufacturing methods.

UNIT - IV 10 Hrs

Pulses: Pulses production, types, chemical composition, anti-nutritional factors, milling of pulses, milling equipment, factors affecting quality, secondary processing of pulses, processed products, fermented products, traditional products, Value addition; effect of processing on nutritive value.

UNIT - V 8 Hrs

Processing of oil seeds for direct use and consumption, Oil extraction methods- mechanical (Ghani and Expellers) and chemical methods (solvent extraction), Processing of extracted oil: Refining, Hydrogenation, Interesterification. Processing of deoiled cake into protein concentrates and isolates, Texturized vegetable protein, Functional protein preparations. Peanut butter, Margarine and Spread.

Textbooks:

• K. Kulp and J. G. Ponte. Jr., "Hand Book of Cereal Science and Technology", 2nd Edition, CRC, 2000.

Food Technology

• G. Owens, "Cereals Processing Technology", 2nd Edition, Wood head Publishing, 2001.

- 1. D.A.V. Dendy and B.J. Dobraszczyk, "Cereals and Cereal products: Chemistry and Technology", Vol. 4, Springer, 1st Edition, 2001.
- 2. B.O.Juliano, "Rice: Chemistry and Technology", 2nd Edition, AACC, 1985.
- 3. Y.Pomeranz, "Wheat: Chemistry and Technology", 3rd Edition, AACC,1988.
- 4. A. Karleskind, "Oils and Fats manual", 1st Edition, Lavoisier Publisher, Paris, 2096.
- 5. R.H. Mathews, Marcel Dekker, "Legumes: Chemistry, Technology and Human Nutrition", 1st Edition, 2089.
- 6. D. Swer, "Bailey's Industrial Oil & Fat Products", 5th Edition, John Wiley & Sons, 2005.

Food Technology

Course Code	FLUID FLOW IN FOOD PROCESSING		L	T	P	С
20A27303T			3	0	0	3
Pre-requisite		Semester		III		
Course Objectives:	Course Objectives:					

- The basic concepts of fluid types and fluid-flow phenomena
- To enable the students to understand the concept and importance of friction factor by using
- To understand the application of friction losses through pipes
- To classify and select the pumps depending on suitability and acquire knowledge on power requirements in pumps

Course Outcomes (CO):

By the end of the course the students will be able to

- Gain knowledge on various types of fluids available and their classification with examples
- Acquires knowledge on different types of flow regimes that fluid can flow
- Know the applications and usage of Bernoulli's theory, Buckingham's Pi theorem, Hagen-Poiseuilli and Rabinowitsch-Mooney equation
- Gain the knowledge on significance of friction factor and their calculations
- Understand frictional losses through pipes and pipe fittings
- Have knowledge on selection of pumps and their performance evaluation

UNIT - I 8 Hrs

Types of Fluids: Newtonian & Non-Newtonian Fluids-dilantant, pseudoplastic, bingham plastic, bingham pseudoplastic; classification of fluids based on time dependance: Thixotropic and rheopectic classification of fluids based on density Compressible and In compressible fluids.

UNIT - II 12 Hrs

Fluid Flow: Laminar and turbulent flows, Reynolds Number; Equation of Continuity, Bernoulli's equation, applications of Bernoulli's equation, Cavitation, laminar and turbulent flow in pipes (Concept of Boundary Layer & Entrance Length)

UNIT - III 8 Hrs

Friction Factor: Definition of Friction Factor; relationship between Friction factor and Reynolds Number by using Dimensionless analysis, Friction Factor: Derivation of friction factor for Laminar Flow by using Hagen-Poiseuille equation; Friction Factor: Turbulent Flow, Moody Chart, Rabinowitsch-Mooney equation: Non- Newtonian Fluids (Power Law Fluids); Generalized Reynolds Number; Friction Chart.

UNIT - IV 10 Hrs

PressureLosses in Pipes & Flow Measurement: Energy equation for steady flow of fluids: Pressure, Kinetic & Potential Energy. Major Losses: Frictional Losses; Minor losses: Energy Losses due to sudden expansion, contraction & energy losses due to pipe fittings; Measurement of Flow in Pipes: Venturimeter, Pitot tube, Rotameter and others.

UNIT - V 8 Hrs

Pumps, Pipes & Fittings: Classification of Pumps: Centrifugal pumps, Reciprocating pumps, Rotary Pumps; Pressure Head, Suction Head, Discharge Head, Net Positive Suction Head; Power requirement of

Food Technology

Pump; Selection of Pumps & Performance Evaluation. Pipe & Pipe Fittings & their selection.

Textbooks:

- 1. D. G. Rao, Fundamentals of Food Engineering, Prentice-Hall of India, New Delhi, 2010
- 2. P.G. Smith, Introduction to Food Process Engineering, 2nd Edition, Lincoln, UK, 2010.

- 1. Christie John Geankoplis. 2003. Transport Processes and Separation Process Principles (Includes Unit Operations), 4th Ed. Prentice-Hall, NY, USA.
- 2. R. Paul Singh and Dennis R. Heldman, Introduction to Food Engineering, 4th Edition, Academic Press, 2009.
- 3. Z. Berk, Food Process Engineering and Technology, Food Science and Technology, 1st Edition, International Series, Elsevier, 2009.

Course Code	PRINCIPLES OF FOOD EN	GINEERING	L	Т	P	С
20A27304			3	0	0	3
Pre-requisite		Semester			III	
Course Objectives:						
	ze the importance and usage of units.					
To interpret	the fundamental laws and principles a	and its application				
Course Outcomes (CO):					
Students will	l learn the importance of units.					
 Students will 	l understand the basic laws and princi	ples and its applicat	ion in f	ood er	gineer	ing.
UNIT - I					8	Hrs
Introduction to Foo	d Engineering: Definition of terms	, System of measu	rement	s, The	e S.I	System,
Conversion of Units	s. Steam Generation & Utilization: (Concept of normal 1	ooiling	point,	Prope	erties of
Steam, Forms of Ste	eam. Pressure-Enthalpy diagram, Pro	blems; Boilers: Cla	assifica	tion, T	ypes,	Criteria
for selection, Mainte	nance & Applications.					
UNIT - II					1:	2 Hrs
Basic principles of	Physics & Chemistry: Ideal Gas 1	law, Vander Waal's	s equat	ion, A	maga	t's law,
Dalton's law, Probl	lems; Kinetic Theory of gases. Th	ermodynamics: Bas	sic con	cepts,	First	law of
thermodynamics, Se	econd law of thermodynamics, Zero	law of thermodyn	amics	Refrig	eration	n: Basic
concepts, Joule-Thor	mson effect, Refrigerants, Problems, 1	Refrigeration types (VCC, V	VAC),	Appli	cations.
UNIT - III					8	Hrs
Humidity: Humidity	& Relative Humidity, Saturation 1	Humidity, Percentag	ge Hum	nidity,	Psych	ometric
chart – Utilization, p	roblems; Humidifiers & Dehumidifie	rs; Applications.				
Material balance ar	nd Energy balance in various unit	operations - Probl	lems, s	ignific	ance	in food
processing.						
UNIT - IV						0 Hrs
Dimensional Analys	sis, Fundamental -derived units. C	onversion of Dime	nsional	equa	tions	– Uses,
Methods (Rayleigh'	s & Buckingham's) Examples: N	usselts Number, Ro	eynolds	num	ber, P	'randtl's
number, Froude's r	number. Engineering properties of	Food Materials: M	ass- v	olume	area	related
	rheological properties of solid foods,		of froze	n & u	nfroze	n foods,
electrical conductivit	ty of foods, dielectric properties of fo	ods.				
UNIT - V					8	Hrs
Measurement & Co	ontrol of Process Parameters: Vari	ous Process Param	eters,	On-lin		
parameters, Critical	& non-critical parameters, Measuren	nent of various parai	neters,	contro	olling 1	methods
(Manual, Automatic	& Computer control)	_				
Textbooks:						

Food Technology

- 1. R. Paul Singh and Dennis R. Heldman, "Introduction to Food Engineering". Academic Press, 4th Edition, 2009.
- 2. P.G. Smith, "Introduction to Food Process Engineering". Springer, 2nd Edition, 2011.

- 1. J.M. Smith, H.C. Van Ness and M.M. Abbott "Introduction to Chemical Engineering Thermodynamics", 7th Edition, McGraw-Hill, Inc., NY, USA. 2005.
- 2. Z. Berk, "Food Process Engineering and Technology, Food Science and Technology", 1st Edition, International Series, Elsevier, 2009.
- 3. D. G. Rao, "Fundamentals of food engineering", Prentice-Hall of India, New Delhi, 2010.
- 4. R.K. Rajput. "Engineering Thermodynamics", 3rd Edition, Laxmi Publications (P) Ltd., Bangalore, 2007.
- 5. Warren L. McCabe, "Unit Operations of Chemical Engineering", 7th Edition, Julian Smith, Peter Harriott, McGraw-Hill, Inc., NY, USA, 2004.
- 6. Christie John Geankoplis "Transport Processes and Separation Process Principles" (Includes Unit Operations), 4th Edition, Prentice-Hall, NY, USA. 2003.

Food Technology

Course Code	FOOD ANALYSIS LAB		L	T	P	C
20A27305			0	0	3	1.5
Pre-requisite		Semester		I	II	

Course Objectives:

• To expertise the students to analyze the proximate composition and other important constituents present in the food.

Course Outcomes (CO):

By the end of the practical exercises, the students will be able to

- Adapt suitable method for food analysis
- Apply the knowledge of Techniques in Food Analysis,
- Differentiate between Qualitative identification and Quantitative estimations

List of Experiments:

- 1. Sampling plan; Sampling requirements, Sample collection and preparation for analysis procedures and methods
- 2. Determination of pH
- 3. Determination of moisture content of foods by oven drying and distillation methods
- 4. Determination of Total and Acid insoluble ash content in foods
- 5. Determination of crude fat content by solvent extraction methods in foods
- 6. Determination of crude Protein by Kjeldhal Lowry method & other methods
- 7. Determination of reducing and total sugar content in foods
- 8. Determination of crude fibre content in foods
- 9. Determination of specific mineral contents in foods such as Calcium, Iron, Phosphorus, Chloride etc.
- 10. Determination of specific vitamin content of food such as ascorbic acid, carotenes etc.
- 11. Determination of specific Natural and/ or added Colouring Matters in foods
- 12. Determination of specific added food Preservatives in foods.

Food Technology

Course Code	PROCESSING OF CEREALS, PULSES AND OIL		L	T	P	C
20A27302P	SEEDS LAB		0	0	3	1.5
Pre-requisite		Semester	III			

Course Objectives:

- Determination of parameters by qualitative and quantitative methods
- Study on some important unit operations used for some grains
- Preparation of standard food products.

Course Outcomes (CO):

- Students are exposed to learn various parameters determination and quantification
- Students will able to prepare and understand the technology involved in foods from grains
- Students will acquire more knowledge by visiting industries.

List of Experiments:

- 1. Determination of physical properties (Bulk Density, Porosity, Sphericity, Angle of repose, Test weight, Particle size, Sieve analysis) of different grains.
- 2. Estimation of Gluten content, sedimentation value, alcoholic acidity, water absorption capacity and Polenske value of wheat flour.
- 3. Determination of adulterant (NaHCO₃) in wheat flour/ Maida.
- 4. Determination of alkali score and gelatinization temperature of rice.
- 5. Traditional and improved pre-treatments and their effect on dehusking of some legumes.
- 6. Removal of anti-nutritional compounds from selected pulses and oilseeds.
- 7. Study of cooking quality of Dhal.
- 8. Pearling of millets.
- 9. Determination of yeast activity.
- 10. Estimation of different quality parameters of oils.
- 11. Determination of efficiency of oil extraction techniques (mechanical expelling and solvent extraction).
- 12. Preparation of Bread.
- 13. Preparation of Biscuits.
- 14. Preparation of Cookies.
- 15. Preparation of Cake.
- 16. Preparation of Rusk.
- 17. Preparation of Crackers.
- 18. Visit to a Bakery, Confectionery Unit
- 19. Visit to a working modern roller flour mill and FCI godowns.
- 20. Visit to working rice mill.

Food Technology

Course Code	FLUID FLOW IN FOOD PRO	CESSING LAB	L	T	P	C
20A27303P			0	0	3	1.5
Pre-requisite		Semester		I	II	

Course Objectives:

- To impart knowledge on coefficient of discharge, friction factor, pressure drop on different fluids.
- Importance of pipe fittings and application of various pumps in food industry.

Course Outcomes (CO):

By the end of the course the students will be able to

- Know the measurement of fluid pressure, measurement of discharge and measurement of time
- Know how to determine the Coefficient of discharge from the pitot tube experiment
- How to measure the water level from 'U' tube manometer.

List of Experiments:

- 1. To determine the coefficient of discharge of an orifice (or a mouth piece) of a given shape.
- 2. To calibrate an orifice meter and study the variation of the coefficient of discharge with the Reynolds number.
- 3. To study the transition from laminar to turbulent flow and to determine the lower critical Reynolds number.
- 4. To study the velocity distribution in a pipe and also to compute the discharge by integrating the velocity profile.
- 5. To study the variation of friction factor, 'f' for turbulent flow in smooth and rough commercial pipes.
- 6. To determine the loss coefficients for the pipe fittings.
- 7. To verify Bernoulli's equation experimentally.
- 8. To determine the flow rate and coefficient of discharge using Venturimeter.
- 9. Determination of discharge through Rotameter.
- 10. To determine the Reynolds number and types of flow (Laminar or Turbulent), the flow rate and coefficient of discharge using Orifice meter.
- 11. To determine losses due to pipe fitting, sudden enlargement and contraction.
- 12. Measurement of viscosity and surface tension of liquids.
- 13. To determine the characteristics of centrifugal pump and to find out total head, pump efficiency and overall efficiency of pump.
- 14. Study of various types of pipes and pipe fittings.
- 15. Study of different types of valves.
- 16. Study of reciprocating pump.
- 17. Determination of frictional coefficient of given pipe.

Online Learning Resources/Virtual Labs:

http://ce-

iitb.vlabs.ac.in/exp7/Aim.html?domain=%20Chemical%20Engineering&lab=Chemical%20Engineering

https://eerc03-iiith.vlabs.ac.in/exp/reynolds/

https://eerc03-iiith.vlabs.ac.in/exp/bernoullis/

Food Technology

Course Code	PRINCIPLES OF FOOD PRI	ESERVATION	L	T	P	C
20A27306		T	1	0	2	2
Pre-requisite		Semester			III	
Course Objectives:		<u> </u>				
Emphasis or	n importance of food technology into	reduce the spoilage	e and im	prove	the qua	ılity
• To explore t	the various preservation methods.					
Course Outcomes (C						
Upon completion of t	this course students should be able to	understand				
• The changes	s occurring during various food process	essing techniques				
 Technologie 	es involved in storage and preservation	on				
_	of enzymes on spoilage reactions of for					
UNIT - I	, , , , , , , , , , , , , , , , , , ,				8	Hrs
	of Food Science and Technology,	Historical developm	nent of	food p		
_	l principles of food preservation.	_		_		-
	erioration and spoilage of perishable	-	-			
foods.					,	8-
UNIT - II					12	2 Hrs
	s by low temperatures: (A) Chilling	temperatures: Cons	ideratio	n rela		
	emperatures, Chilling injury, Applica	-			_	
_	of foods, Post storage Handling of fo	-				
-	atures: Freezing process, Slow and		oods: ef	fect o	n foods	s, oth
	ed with freezing of foods. Technological					
	nawing of foods, Individual Quick Fr			6,		
UNIT - III		8			8	Hrs
	s by high temperatures: Basic concep	ots in thermal destru	iction of	f micr		
	at resistance and thermophilic micro				_	
	oods. Extrusion, baking, roasting, fr	•	_	_	•	
	essing efficacy of thermal processing		_			
UNIT - IV	g and g and g	,				Hrs
	er removal: (a) Principles, Techno-	logical aspects and	applica	ation o		
•	ss; Freeze concentration and men		• •		•	
_	gical aspects and application of dry	-				
_	v, vacuum, foam mat, fluidized-bed a	-		, , ,	,	
UNIT - V	,,,, <u></u>				8	Hrs
	Preservatives: Classification, Princip	les, Radiations: Sou	irces of	radiat		
	icroorganisms and different nutrient					
	s, irradiation mechanism and surviv	•			•	
	microbial agents, biological agents	_	_			
-	on the nutritive value of foods	,	,,. בווני			100

processing operations on the nutritive value of foods.

Textbooks:

Food Technology

- 1. Norman N. Potter and J.H. Hotchkiss, Chapman and Hall, "Food Science", 5th Edition, 2098.
- 2. P. J. Fellows, "Food processing technology: Principles and Practice", 3rd Edition, Taylor and Francis, 2009.

Reference Books:

- 1. M. Karel, O.R. Fennema and D.B. Lund, "Principles of Food Science-Part-II: Physical Method of Food Preservation", 2nd Edition, Marcel Dekkar Inc., 2001.
- 2. V. Kyzlink, "Principles of Food Preservation", 2nd Edition, Elsevier Press, 2003.
- 3. J. M. Jay, D. Van Nostrand, "Modern Food Microbiology", 7th Edition, 2005.

EXPERIMENTS:

- 1. Demonstration of various perishable food items and degree of spoilage
- 2. Preservation of food by high concentration of sugar
- 3. Preservation of food by using salt
- 4. Blanching of selected food items
- 5. Preservation of food by heat treatment- pasteurization
- 6. Demonstration of preserving foods under cold vs. freezing process
- 7. To study IQF processing of fruits/ vegetable
- 8. Drying of fruit slices pineapple slices, apple slices in cabinet drier
- 9. Effect of irradiation on sprouting of potatoes and onions
- 10. Preservation of food by using acidulants i.e. pickling by acid, vinegar or acetic acid
- 11. Preservation of food by using chemical preservatives
- 12. Preservation of bread, cake using mold inhibitors
- 13. Processing of foods using fermentation technique, i.e. preparation of sauerkraut
- 14. Study on ohmic heating system
- 15. Study on effect of high pressure on microbe
- **16.** Visit to food processing industry

Food Technology

Course Code	ENVIRONMENTAL SCIENCE		L	T	P	С
20A99201	(Common to All Branches of Engineering)		3	0	0	0
Pre-requisite	NIL	Semester	III			

Course Objectives:

- To make the students to get awareness on environment
- To understand the importance of protecting natural resources, ecosystems for future generations and pollution causes due to the day to day activities of human life
- To save earth from the inventions by the engineers.

Course Outcomes (CO):

At the end of the course, the student will be able to

- Grasp multidisciplinary nature of environmental studies and various renewable and nonrenewable resources.
- Understand flow and bio-geo- chemical cycles and ecological pyramids.
- Understand various causes of pollution and solid waste management and related preventive measures.
- About the rainwater harvesting, watershed management, ozone layer depletion and waste land reclamation.
- Casus of population explosion, value education and welfare programmes.

UNIT - I 8 Hrs

Multidisciplinary Nature Of Environmental Studies: – Definition, Scope and Importance – Need for Public Awareness.

Natural Resources: Renewable and non-renewable resources — Natural resources and associated problems — Forest resources — Use and over — exploitation, deforestation, case studies — Timber extraction — Mining, dams and other effects on forest and tribal people — Water resources — Use and over utilization of surface and ground water — Floods, drought, conflicts over water, dams — benefits and problems — Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies — Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies. — Energy resources:

UNIT - II 12 Hrs

Ecosystems: Concept of an ecosystem. – Structure and function of an ecosystem – Producers, consumers and decomposers – Energy flow in the ecosystem – Ecological succession – Food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the following ecosystem:

- a. Forest ecosystem.
- b. Grassland ecosystem

Food Technology

- c. Desert ecosystem
- d. Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

Biodiversity And Its Conservation : Introduction 0 Definition: genetic, species and ecosystem diversity – Bio-geographical classification of India – Value of biodiversity: consumptive use, Productive use, social, ethical, aesthetic and option values – Biodiversity at global, National and local levels – India as a mega-diversity nation – Hot-sports of biodiversity – Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – Endangered and endemic species of India – Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

UNIT - III 8 Hrs

Environmental Pollution: Definition, Cause, effects and control measures of :

- a. Air Pollution.
- b. Water pollution
- c. Soil pollution
- d. Marine pollution
- e. Noise pollution
- f. Thermal pollution
- g. Nuclear hazards

Solid Waste Management: Causes, effects and control measures of urban and industrial wastes – Role of an individual in prevention of pollution – Pollution case studies – Disaster management: floods, earthquake, cyclone and landslides.

UNIT - IV

Social Issues and the Environment: From Unsustainable to Sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns. Case studies – Environmental ethics: Issues and possible solutions – Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case Studies – Wasteland reclamation. – Consumerism and waste products. – Environment Protection Act. – Air (Prevention and Control of Pollution) Act. – Water (Prevention and control of Pollution) Act – Wildlife Protection Act – Forest Conservation Act – Issues involved in enforcement of environmental legislation – Public awareness.

UNIT - V 8 Hrs

Human Population And The Environment: Population growth, variation among nations. Population explosion – Family Welfare Programmes. – Environment and human health – Human Rights – Value Education – HIV/AIDS – Women and Child Welfare – Role of information Technology in Environment and human health – Case studies.

Field Work: Visit to a local area to document environmental assets River/forest grassland/hill/mountain – Visit to a local polluted site-Urban/Rural/Industrial/Agricultural Study of common plants, insects, and birds – river, hill slopes, etc..

Textbooks:

Food Technology

- 1. Text book of Environmental Studies for Undergraduate Courses ErachBharucha for University Grants Commission, Universities Press.
- 2. Palaniswamy, "Environmental Studies", Pearson education
- 3. S.AzeemUnnisa, "Environmental Studies" Academic Publishing Company
- 4. K.Raghavan Nambiar, "Text book of Environmental Studies for Undergraduate Courses as per UGC model syllabus", Scitech Publications (India), Pvt. Ltd.

- 1. Deeksha Dave and E.Sai Baba Reddy, "Textbook of Environmental Science", Cengage Publications.
- 2. M.Anji Reddy, "Text book of Environmental Sciences and Technology", BS Publication.
- 3. J.P.Sharma, Comprehensive Environmental studies, Laxmi publications.
- 4. J. Glynn Henry and Gary W. Heinke, "Environmental Sciences and Engineering", Prentice hall of India Private limited
- 5. G.R.Chatwal, "A Text Book of Environmental Studies" Himalaya Publishing House
- 6. Gilbert M. Masters and Wendell P. Ela, "Introduction to Environmental Engineering and Science, Prentice hall of India Private limited.