

Comupter Science & Engineering (Internet of Things)

		Semester-III					
S.No	Course Code	e Course Name	Category	Hour	s per v	veek	Credit
				L	Т	Р	-
1.	20A54304	Discrete Mathematics & Graph Theory	BS	3	0	0	3
2.	20A04304T	Digital Electronics& Microprocessors	ES	3	0	0	3
3.	20A05303	Computer Organization	PC	3	0	0	3
4.	20A05301T	Advanced Data Structures & Algorithms	PC	3	0	0	3
5.	20A35301T	Sensor and IoT	PC	3	0	0	3
6.	20A04304P	Digital Electronics& Microprocessors Lab	ES	0	0	3	1.5
7.	20A05301P	Advanced Data Structures and Algorithms Lab	PC	0	0	3	1.5
8.	20A35301P	Sensor and IoT Lab					
9	20A35302	Skill Oriented Course – I Programming Arduino	SC	1	0	2	2
10	20A99201	Mandatory noncredit course - II Environmental Science	MC	3	0	0	0
	l.		1		Total	1	21.5

II B.TECH.

		Semester-IV					
S.No	Course Code	Course Name	Category	Hou	rs per w	eek	Credits
				L	Т	Р	
1.	20A54406	Mathematical Modeling and Simulation	BS	3	0	0	3
2.	20A05401T	Database Management Systems	PC	3	0	0	3
3.	20A05402T	Operating Systems	PC	3	0	0	3
4.	20A05403T	Software Engineering	PC	3	0	0	3
5.	20A52301 20A52302 20A52303	Humanities Elective– I Managerial Economics & Financial Analysis Organizational Behaviour Business Environment	HS	3	0	0	3
6.	20A05401P	Database Management SystemsLab	PC	0	0	3	1.5
7.	20A05402P	Operating SystemsLab	PC	0	0	3	1.5
8.	20A05403P	Software Engineering Lab	PC	0	0	3	1.5
9.	20A35401	Skill Oriented Course– II Python Programming for IoT	SC	1	0	2	2
10.	20A99401	Mandatory noncrdit course – III Design Thinking for Innovation	MC	2	1	0	0
11.	20A99301	NSS/NCC/NSO Activities	MC	0	0	2	0
						Total	21.5

Comupter Science & Engineering (Internet of Things)

Note:

- 1. Eligible and interested students can register either for Honors or for a Minor in IV Semester as per the guidelines issued by the University
- 2. Students shall register for NCC/NSS/NSO activities and will be required to participate in an activity for two hours in a week during fourth semester.
- 3. Lateral entry students shall undergo a bridge course in Mathematics during third semester

Course Code	I V	h theory	L	Т	Р	С
20A54304	(Common to CSE, IT, CSE(DS), CS		3	0	0	3
	(AI), CSE (AI & ML) and Al	1				
Pre-requisite	Basic Mathematics	Semester	III			
~ ~ ~ ~ ~ ~						
Course Objectives:						
1	ots of mathematical logic and gain knowled	0				
	g counting techniques and combinatorics		genera	ating	funct	ions
	ons. Use Graph Theory for solving real w	orld problems				
Course Outcomes (C						
*	the course, students will be able to					
·	ematical logic to solve problems.					
	the concepts and perform the operations r					ons.
	nceptual background needed and identify s	e e	raic r	ature	e .	
	counting techniques to solve combinatori	al problems.				
	problems and solve recurrence relations.					
	h Theory in solving computer science pro	blems				
UNIT - I	Mathematical Logic		8 H			
	ents and Notation, Connectives, Well-form				•	
	cation, Normal Forms, Functionally con	-			Infer	ence
	Calculus, Predicate Calculus, Inference th	heory of Predicate	1			
UNIT - II	Set theory		9 H			
^	et Theory, Relations and Ordering, The Prin	*				-
* *	s application,Functions composition of fu					
	nd its properties. Algebraic structures: Alg	•	-		d Gei	neral
	ups and Monoids, groups, sub groups, hor	nomorphism, Ison	1			
UNIT - III	Elementary Combinatorics		8 H			
	g, Combinations and Permutations, H					
	nerating Combinations and Permutation	—				-
	Constrained Repetitions, Binomial Coeffic	ients, The Binomi	ai an	a Mu	litino	miai
Theorems.	Decumence Deletions		0.11			
UNIT - IV	Recurrence Relations	of Concepting En	9 H			
-	as of Sequences, Calculating Coefficients ecurrence Relations by Substitution and C	-				
e	Solutions of Inhomogeneous Recurrence	e	JIIS, 1		letho	u oi
UNIT - V	-	Kelations.	9 H	10		
	Graphs	Properties Spann			Dire	otad
-	morphism and Subgraphs, Trees and their , Planar Graphs, Euler's Formula, Multigr		-			
•	Numbers, The Four Color Problem	apris and Euler Cl	icult	, 11d		'IIIdíl
Textbooks:	vumbers, the rout Color Flobleni					
I CALUOURS.						

Comupter Science & Engineering (Internet of Things)

- 1. Joe L. Mott, Abraham Kandel and Theodore P. Baker, Discrete Mathematics for Computer Scientists & Mathematicians, 2nd Edition, Pearson Education.
- 2. J.P. Tremblay and R. Manohar, Discrete Mathematical Structures with Applications to Computer Science, Tata McGraw Hill, 2002.

Reference Books:

- 1. Kenneth H. Rosen, Discrete Mathematics and its Applications with Combinatorics and Graph Theory, 7th Edition, McGraw Hill Education (India) Private Limited.
- 2. Graph Theory with Applications to Engineering and Computer Science byNarsinghDeo.

Online Learning Resources:

http://www.cs.yale.edu/homes/aspnes/classes/202/notes.pdf

Course Code	DIGITAL ELECTRONICS &	L	Т	P	C
20A04304T	MICROPROCESSORS	3	0	0	3
Pre-requisite	Basic Electronics	Semester		III	
Course Objectives					
	and all the concepts of Logic Gates and Boolean Function				
	out Combinational Logic and Sequential Logic Circuit	s.			
	ogic circuits using Programmable Logic Devices.				
	and basics of 8086 Microprocessor and 8051 Microcon				
	and architecture of 8086 Microprocessor and 8051 Mic	rocontroller.			
	ssembly Language Programming of 8086 and 8051.				
Course Outcomes					
	of this course, the student will be able to:				
	Logic circuit using basic concepts of Boolean Algebra	ì.			
	Logic circuit using basic concepts of PLDs.				
	develop any application using 8086 Microprocessor.				
	develop any application using 8051 Microcontroller.				
UNIT - I	Number Systems & Code Conversion				
Number Systems &	Code conversion, Boolean Algebra & Logic Gates, Tru	uth Tables, U	nivers	sal Ga	ates,
Simplification of E	Boolean functions, SOP and POS methods - Simplific	ation of Boo	lean	funct	ions
using K-maps,Sign	ed and Unsigned Binary Numbers.				
UNIT - II	Combinational Circuits				
Combinational La	gic Circuits: Adders &Subtractors, Multiplexers,	Domultinlaw	I I	Tració	lana
		Demuniplexe	ers, r	Encoc	iers,
e e	mable Logic Devices.				
UNIT - III	Sequential Circuits				
Sequential Logic C	Circuits: RS, Clocked RS, D, JK, Master Slave JK, T	Flip-Flops, S	hift I	Regis	ters,
Types of Shift Reg	isters, Counters, Ripple Counter, Synchronous Counter	rs, Asynchron	nous (Count	ters,
Up-Down Counter.					
UNIT - IV	Microprocessors - I				
8085 microprocess	or Review (brief details only), 8086 microprocessor, F	unctional Dis	oram	reg	ister
organization 8086	Flag register of 8086 and its functions, Addressing mo	des of 8086	Pin di	aorar	n of
	ode & Maximum mode operation of 8086, Interrupts in		i ili ui	agrai	11 01
UNIT – V	Microprocessors - II	0000.			
	8086, Assembler directives, Procedures and Macros, S	Simple progr	ome	nvol	ing
	branch instructions, Ascending, Descending and Blo				
	uctions. Overview of 8051 microcontroller, Architectu				lory
organization, addre	ssing modes and instruction set of 8051(Brief details o	my), Smple	FIOgi	ams.	
Text Books:					
	Michael D. Ciletti, Digital Design, Pearson Education	5 th Edition	2013		
	Digital Electronics: Principles, Devices and Application			ons, I	_td.,
3. N. Senthil Kum	ar, M. Saravanan, S. Jeevanathan, Microprocessor and xford Publishers, 2010.				
	opprocessors and peripherals-A.K Ray and K.M.Bhurch	nandani, TMH	H, 2no	d edit	ion,
Reference Books:					
Reference DUUKS:					

Comupter Science & Engineering (Internet of Things)

- 1. Thomas L. Floyd, Digital Fundamentals A Systems Approach, Pearson, 2013.
- 2. Charles H. Roth, Fundamentals of Logic Design, Cengage Learning, 5th, Edition, 2004.
- 3. D.V.Hall, Microprocessors and Interfacing. TMGH, 2nd edition, 2006.

4. Kenneth.J.Ayala, The 8051 microcontroller, 3rd edition, Cengage Learning, 2010.

Online Learning Resources:

NPTEL, SWAYAM

	comupter Science & Engineering (Internet of Timigs)	_	_		~
Course Code	Computer Organization	L	T	P	С
20A05303	(Common to CSE, IT, CSE(DS), CSE (IoT), CSE (AI), CSE	3	0	0	3
	(AI & ML) and AI & DS)				
Pre-requisite	Digital Electronics Semester		I	Π	
Course Objectives:					
	e fundamentals of computer organization and its relevance to class	sica	l and	l mod	lern
	computer design				
	nd the structure and behavior of various functional modules of a con-	mpu	ter.		
	techniques that computers use to communicate with I/O devices				
	he concept of pipelining and exploitation of processing speed.				
• To learn the	basic characteristics of multiprocessors				
Course Outcomes					
	the course, students will be able to				
	computer architecture concepts related to the design of modern pro-	cesso	ors, r	nemo	ries
and I/Os					
	hardware requirements for cache memory and virtual memory				
	rithms to exploit pipelining and multiprocessors				
	the importance and trade-offs of different types of memories.				
Identify pip	eline hazards and possible solutions to those hazards				
UNIT - I	Basic Structure of Computer, Machine Instructions and	8H	rc		
0111 - 1	Programs	011	15		
Machine Instruction	Performance, Multiprocessors and Multicomputer. ons and Programs: Numbers, Arithmetic Operations and Programs cing, Addressing Modes, Basic Input/output Operations, Stac onal Instructions.				
UNIT - II	Arithmetic, Basic Processing Unit	9H	rs		
	on and Subtraction of Signed Numbers, Design of Fast Adders,			catior	of
	Signed-operand Multiplication, Fast Multiplication, Integer Division				
Numbers and Opera		ĺ		U	
Basic Processing	Unit: Fundamental Concepts, Execution of a Complete Instruction	ion,	Mul	tiple-	Bus
	vired Control, and Multi programmed Control.			•	
UNIT - III	The Memory System	8H			
	em: Basic Concepts, Semiconductor RAM Memories, Read-Only				
	e Memories, Performance Considerations, Virtual Memories, Men	nory	Mar	nagem	lent
Requirements, Seco	ndary Storage.				
		011			
UNIT - IV	Input/Output Organization	8H		14	
	anization: Accessing I/O Devices, Interrupts, Processor Examples face Circuits, Standard I/O Interfaces.	8, D1	rect	Mem	ory
UNIT - V	Pipelining, Large Computer Systems	9 F	Irs		
Pipelining: Basic C Large Computer S Purpose multiproces	oncepts, Data Hazards, Instruction Hazards, Influence on Instructio systems: Forms of Parallel Processing, Array Processors, The Strussors, Interconnection Networks.	n Se	ts.	Gene	ral-
Textbooks:					

Comupter Science & Engineering (Internet of Things)

1. Carl Hamacher, ZvonkoVranesic, SafwatZaky, "Computer Organization", 5th Edition, McGraw Hill Education, 2013.

Reference Books:

- 1. M.Morris Mano, "Computer System Architecture", 3rd Edition, Pearson Education.
- 2. Themes and Variations, Alan Clements, "Computer Organization and Architecture", CENGAGE Learning.
- 3. SmrutiRanjanSarangi, "Computer Organization and Architecture", McGraw Hill Education.
- 4. John P.Hayes, "Computer Architecture and Organization", McGraw Hill Education

Online Learning Resources:

https://nptel.ac.in/courses/106/103/106103068/

Course Code	Advanced Data Structures &		L	T	P	C
20A05301T	(Common to CSE, IT, CSE(DS), CSE (AI & ML) and AI &		3	0	0	3
Pre-requisite	Data Structures	Semester		II		
			1			
Course Objectives	S:					
<u> </u>	tic notations, and analyze the performance of	f different algorithms.				
	d implement various data structures.	0				
• Learn and impl	lement greedy, divide and conquer, dynamic	programming and backti	racki	ng al	gorith	nms
using relevant	data structures.					
 Understand no 	n-deterministic algorithms, polynomial and	non-polynomial problem	ns.			
Course Outcomes						
	of the course, students will be able to					
	e complexity of algorithms and apply asymp	ptotic notations.				
	-linear data structures and their operations.					
	d and apply greedy, divide and conquer algo					
	ynamic programming algorithms for various					
• Illustrate E	Backtracking algorithms for various applicati	ons.				
				r		
UNIT - I	Introduction to Algorithms		9 H	irs		
Introduction to A					-	
Algorithms, Pseud	locode for expressing algorithms, Perform	nance Analysis-Space	com	plexit	y, T	Ime
				1		
	ptotic Notation- Big oh, Omega, Theta notat		on, P	olyno		
	ptotic Notation- Big oh, Omega, Theta notat ithms, Average, Best and Worst Case Compl		on, P	olyno		
Exponential Algor	ithms, Average, Best and Worst Case Compl		on, P rsive	olyno Prog		
			on, P rsive	olyno		
Exponential Algor UNIT - II Trees Part-I Binary Search Tr	 ithms, Average, Best and Worst Case Completion Trees Part-I ees: Definition and Operations, AVL Trees: 	lexities, Analysing Recu	on, P rsive 81	olyno Prog Hrs	grams	5.
Exponential Algor UNIT - II Trees Part-I Binary Search Tr B Trees: Definitio	 ithms, Average, Best and Worst Case Completion Trees Part-I ees: Definition and Operations, AVL Trees: 	lexities, Analysing Recu	on, P rsive 81	olyno Prog Hrs Applio	grams	5.
Exponential Algor UNIT - II Trees Part-I	Trees Part-I ees: Definition and Operations, AVL Trees: n and Operations.	lexities, Analysing Recu	on, P rsive 81 ns, A	olyno Prog Hrs Applio	grams	5.
Exponential Algor UNIT - II Trees Part-I Binary Search Tr B Trees: Definitio UNIT - III Trees Part-II	Trees Part-I ees: Definition and Operations, AVL Trees: n and Operations.	lexities, Analysing Recu	on, P rsive 81 ns, A	olyno Prog Hrs Applio	grams	5.
Exponential Algor UNIT - II Trees Part-I Binary Search Tr B Trees: Definitio UNIT - III Trees Part-II Red-Black Trees, S	ithms, Average, Best and Worst Case Compl Trees Part-I ees: Definition and Operations, AVL Trees: n and Operations. Trees Part-II	lexities, Analysing Recu Definition and Operatio	on, P rsive 81 ns, A 8 F	e Prog Hrs Applie Irs	catior	3. 118.
Exponential Algor UNIT - II Trees Part-I Binary Search Tr B Trees: Definitio UNIT - III Trees Part-II Red-Black Trees, S	ithms, Average, Best and Worst Case Compl Trees Part-I ees: Definition and Operations, AVL Trees: n and Operations. Trees Part-II Splay Trees, Applications.	lexities, Analysing Recu Definition and Operatio	on, P rsive 81 ns, A 8 F	e Prog Hrs Applie Irs	catior	3. 118.
Exponential Algor UNIT - II Trees Part-I Binary Search Tr B Trees: Definitio UNIT - III Trees Part-II Red-Black Trees, S Hash Tables: Intr Applications.	ithms, Average, Best and Worst Case Compl Trees Part-I ees: Definition and Operations, AVL Trees: n and Operations. Trees Part-II Splay Trees, Applications. roduction, Hash Structure, Hash functions,	lexities, Analysing Recu Definition and Operatio	on, P rsive 81 ns, A 8 F ng, 0	olyno Prog Hrs Applio Irs Chain	catior	3. 118.
Exponential Algori UNIT - II Trees Part-I Binary Search Tr B Trees: Definitio UNIT - III Trees Part-II Red-Black Trees, S Hash Tables: Intr Applications. UNIT - IV	Ithms, Average, Best and Worst Case Completion Trees Part-I ees: Definition and Operations, AVL Trees: n and Operations. Trees Part-II Splay Trees, Applications. roduction, Hash Structure, Hash functions, Divide and conquer, Greedy method	lexities, Analysing Recu Definition and Operatio	on, P rsive 81 ns, A 8 F ng, 0	olyno Prog Hrs Applio Irs Chain	catior	and
Exponential Algor UNIT - II Trees Part-I Binary Search Tr B Trees: Definitio UNIT - III Trees Part-II Red-Black Trees, S Hash Tables: Intr Applications. UNIT - IV Divide and conqu	Ithms, Average, Best and Worst Case Completion Trees Part-I ees: Definition and Operations, AVL Trees: n and Operations. Trees Part-II Splay Trees, Applications. roduction, Hash Structure, Hash functions, Divide and conquer, Greedy method Ier: General method, applications-Binary s	lexities, Analysing Recu Definition and Operatio	on, P rsive 81 ns, A 8 F ng, 0	olyno Prog Hrs Applio Irs Chain	catior	and
Exponential Algori UNIT - II Trees Part-I Binary Search Tr B Trees: Definitio UNIT - III Trees Part-II Red-Black Trees, S Hash Tables: Intr Applications. UNIT - IV Divide and conqu Quick sort, Merge	Ithms, Average, Best and Worst Case Completion Trees Part-I ees: Definition and Operations, AVL Trees: n and Operations. Trees Part-II Splay Trees, Applications. roduction, Hash Structure, Hash functions, Divide and conquer, Greedy method ier: General method, applications. sort, Strassen's matrix multiplication.	lexities, Analysing Recu Definition and Operatio Linear Open Addressi search, Finding Maximu	on, P rsive <u>81</u> ns, <i>A</i> <u>8 F</u> ng, 0 <u>9 F</u> im a	elyno Prog Hrs Applio Irs Chain Irs nd m	cation ning	anc
Exponential Algori UNIT - II Trees Part-I Binary Search Tr B Trees: Definitio UNIT - III Trees Part-II Red-Black Trees, S Hash Tables: Intr Applications. UNIT - IV Divide and conqu Quick sort, Merge Greedy method:	Ithms, Average, Best and Worst Case Completion Trees Part-I ees: Definition and Operations, AVL Trees: n and Operations. Trees Part-II Splay Trees, Applications. roduction, Hash Structure, Hash functions, Divide and conquer, Greedy method ier: General method, applications-Binary sort, Strassen's matrix multiplication. General method, applications-Job sequen	lexities, Analysing Recu Definition and Operatio	on, P rsive <u>81</u> ns, <i>A</i> <u>8 F</u> ng, 0 <u>9 F</u> im a	elyno Prog Hrs Applio Irs Chain Irs nd m	cation ning	anc
Exponential Algori UNIT - II Trees Part-I Binary Search Tr B Trees: Definitio UNIT - III Trees Part-II Red-Black Trees, S Hash Tables: Intr Applications. UNIT - IV Divide and conqu Quick sort, Merge Greedy method:	Ithms, Average, Best and Worst Case Completion Trees Part-I ees: Definition and Operations, AVL Trees: n and Operations. Trees Part-II Splay Trees, Applications. roduction, Hash Structure, Hash functions, Divide and conquer, Greedy method ier: General method, applications. sort, Strassen's matrix multiplication.	lexities, Analysing Recu Definition and Operatio	on, P rsive <u>81</u> ns, <i>A</i> <u>8 F</u> ng, 0 <u>9 F</u> im a	elyno Prog Hrs Applio Irs Chain Irs nd m	cation ning	anc
Exponential Algori UNIT - II Trees Part-I Binary Search Tr B Trees: Definitio UNIT - III Trees Part-II Red-Black Trees, S Hash Tables: Intr Applications. UNIT - IV Divide and conqu Quick sort, Merge Greedy method: Minimum cost spare	Ithms, Average, Best and Worst Case Completion Trees Part-I ees: Definition and Operations, AVL Trees: n and Operations. Trees Part-II Splay Trees, Applications. roduction, Hash Structure, Hash functions, Divide and conquer, Greedy method ier: General method, applications-Binary sort, Strassen's matrix multiplication. General method, applications-Job sequen nning trees, Single source shortest path prob	lexities, Analysing Recu Definition and Operatio Linear Open Addressi search, Finding Maximu cing with deadlines, k lem.	on, P rsive 81 ns, A 8 8 H ng, (9 F um a naps	e Prog Hrs Applie Irs Chain Irs nd m ack	cation ning	anc
Exponential Algori UNIT - II Trees Part-I Binary Search Tr B Trees: Definitio UNIT - III Trees Part-II Red-Black Trees, S Hash Tables: Intr Applications. UNIT - IV Divide and conqu Quick sort, Merge Greedy method: Minimum cost spar UNIT - V	Ithms, Average, Best and Worst Case Completion Trees Part-I ees: Definition and Operations, AVL Trees: n and Operations. Trees Part-II Splay Trees, Applications. roduction, Hash Structure, Hash functions, Divide and conquer, Greedy method Ier: General method, applications-Binary s sort, Strassen's matrix multiplication. General method, applications-Job sequen nning trees, Single source shortest path prob Dynamic Programming & Backtrackin	lexities, Analysing Recu Definition and Operatio Linear Open Addressi search, Finding Maximu cing with deadlines, k lem.	on, P rsive 81 ns, A 8 F ng, 0 9 F um a naps	e Prog Hrs Applie Irs Chain Irs nd m ack	catior ning	anc
Exponential Algori UNIT - II Trees Part-I Binary Search Tr B Trees: Definitio UNIT - III Trees Part-II Red-Black Trees, S Hash Tables: Intr Applications. UNIT - IV Divide and conqu Quick sort, Merge Greedy method: Minimum cost spar UNIT - V Dynamic Program	Ithms, Average, Best and Worst Case Completion Trees Part-I ees: Definition and Operations, AVL Trees: n and Operations. Trees Part-II Splay Trees, Applications. roduction, Hash Structure, Hash functions, Divide and conquer, Greedy method Ier: General method, applications-Binary s sort, Strassen's matrix multiplication. General method, applications-Job sequen nning trees, Single source shortest path prob Dynamic Programming & Backtrackin nming: General method, applications- 0/1	lexities, Analysing Recu Definition and Operatio Linear Open Addressi search, Finding Maximu cing with deadlines, k lem.	on, P rsive 81 ns, A 8 F ng, 0 9 F um a naps	e Prog Hrs Applie Irs Chain Irs nd m ack	catior ning	anc
Exponential Algori UNIT - II Trees Part-I Binary Search Tr B Trees: Definitio UNIT - III Trees Part-II Red-Black Trees, S Hash Tables: Intr Applications. UNIT - IV Divide and conqu Quick sort, Merge Greedy method: Minimum cost spar UNIT - V Dynamic Program problem, Travellin	Ithms, Average, Best and Worst Case Completion Trees Part-I ees: Definition and Operations, AVL Trees: n and Operations. Trees Part-II Splay Trees, Applications. roduction, Hash Structure, Hash functions, Divide and conquer, Greedy method ier: General method, applications-Binary s sort, Strassen's matrix multiplication. General method, applications-Job sequen nning trees, Single source shortest path prob Dynamic Programming & Backtrackin nming: General method, applications-0/1 g salesperson problem, Reliability design.	lexities, Analysing Recu Definition and Operatio Linear Open Addressi search, Finding Maximu cing with deadlines, k lem.	pn, P rsive 81 ns, A 8F ng, 0 9F um a naps 9F pairs	e Prog Hrs Applie Irs Chain Irs nd m ack Irs shor	catior ning ninim proble	anc um oath
Exponential Algori UNIT - II Trees Part-I Binary Search Tr B Trees: Definitio UNIT - III Trees Part-II Red-Black Trees, S Hash Tables: Intr Applications. UNIT - IV Divide and conqu Quick sort, Merge Greedy method: Minimum cost spa UNIT - V Dynamic Program problem, Travellin Backtracking: Ge	Ithms, Average, Best and Worst Case Completion Trees Part-I ees: Definition and Operations, AVL Trees: n and Operations. Trees Part-II Splay Trees, Applications. roduction, Hash Structure, Hash functions, Divide and conquer, Greedy method ter: General method, applications-Binary sort, Strassen's matrix multiplication. General method, applications-Job sequen nning trees, Single source shortest path prob Dynamic Programming & Backtrackin nming: General method, applications- 0/1 I g salesperson problem, Reliability design. neral method, applications-n-queen problem	lexities, Analysing Recu Definition and Operatio Linear Open Addressi search, Finding Maximu cing with deadlines, k lem.	pn, P rsive 81 ns, A 8F ng, 0 9F um a naps 9F pairs	e Prog Hrs Applie Irs Chain Irs nd m ack Irs shor	catior ning ninim proble	anc um oath
Exponential Algori UNIT - II Trees Part-I Binary Search Tr B Trees: Definitio UNIT - III Trees Part-II Red-Black Trees, S Hash Tables: Intr Applications. UNIT - IV Divide and conqu Quick sort, Merge Greedy method: Minimum cost spar UNIT - V Dynamic Program problem, Travellin Backtracking: Ge Hamiltonian cycles	Items, Average, Best and Worst Case Completion Trees Part-I ees: Definition and Operations, AVL Trees: n and Operations. Trees Part-II Splay Trees, Applications. roduction, Hash Structure, Hash functions, Divide and conquer, Greedy method ter: General method, applications-Binary s sort, Strassen's matrix multiplication. General method, applications-Job sequen nning trees, Single source shortest path prob Dynamic Programming & Backtrackin nming: General method, applications- 0/1 1 g salesperson problem, Reliability design. neral method, applications-n-queen problem	lexities, Analysing Recu Definition and Operatio Linear Open Addressi search, Finding Maximu cing with deadlines, k lem. ng knapsack problem, All p	pn, P rsive 81 ns, A 8F ng, 0 9F um a naps 9F pairs	e Prog Hrs Applie Irs Chain Irs nd m ack Irs shor	catior ning ninim proble	anc um oath
Exponential Algori UNIT - II Trees Part-I Binary Search Tr B Trees: Definitio UNIT - III Trees Part-II Red-Black Trees, S Hash Tables: Intr Applications. UNIT - IV Divide and conqu Quick sort, Merge Greedy method: Minimum cost spat UNIT - V Dynamic Program problem, Travellin Backtracking: Ge Hamiltonian cycles Introduction to N	Ithms, Average, Best and Worst Case Completion Trees Part-I ees: Definition and Operations, AVL Trees: n and Operations. Trees Part-II Splay Trees, Applications. roduction, Hash Structure, Hash functions, Divide and conquer, Greedy method ter: General method, applications-Binary sort, Strassen's matrix multiplication. General method, applications-Job sequen nning trees, Single source shortest path prob Dynamic Programming & Backtrackin nming: General method, applications- 0/1 I g salesperson problem, Reliability design. neral method, applications-n-queen problem	lexities, Analysing Recu Definition and Operatio Linear Open Addressi search, Finding Maximu cing with deadlines, k lem. ng knapsack problem, All p	pn, P rsive 81 ns, A 8F ng, 0 9F um a naps 9F pairs	e Prog Hrs Applie Irs Chain Irs nd m ack Irs shor	catior ning ninim proble	anc
Exponential Algori UNIT - II Trees Part-I Binary Search Tr B Trees: Definitio UNIT - III Trees Part-II Red-Black Trees, S Hash Tables: Intr Applications. UNIT - IV Divide and conqu Quick sort, Merge Greedy method: Minimum cost spat UNIT - V Dynamic Program problem, Travellin Backtracking: Ge Hamiltonian cycles Introduction to N Textbooks:	Items, Average, Best and Worst Case Completion Trees Part-I ees: Definition and Operations, AVL Trees: n and Operations. Trees Part-II Splay Trees, Applications. roduction, Hash Structure, Hash functions, Divide and conquer, Greedy method ter: General method, applications-Binary s sort, Strassen's matrix multiplication. General method, applications-Job sequen nning trees, Single source shortest path prob Dynamic Programming & Backtrackin nming: General method, applications- 0/1 1 g salesperson problem, Reliability design. neral method, applications-n-queen problem	lexities, Analysing Recu Definition and Operatio Linear Open Addressi search, Finding Maximu cing with deadlines, k lem. ng knapsack problem, All p h, sum of subsets problem <u>c Concepts.</u>	on, P rsive 81 ns, A 8 F ng, 0 9 F im a naps pairs m, gr	e Prog Hrs Applie Irs Chain Irs nd m ack Irs shor	catior ning ninim proble	and

Comupter Science & Engineering (Internet of Things)

2. Fundamentals of Computer Algorithms, Ellis Horowitz, Sartaj Sahni and Rajasekharam, Galgotia publications Pvt. Ltd.

Reference Books:

1. Classic Data Structures by D. Samanta, 2005, PHI

2. Design and Analysis of Computer Algorithms by Aho, Hopcraft, Ullman 1998, PEA.

3. Introduction to the Design and Analysis of Algorithms by Goodman, Hedetniemi, TMG.

Online Learning Resources:

https://www.tutorialspoint.com/advanced_data_structures/index.asp http://peterindia.net/Algorithms.html

Course Code	S	ENSORS AI		TERNET OF	THINGS	L	Т	Р	С
20A35301T						3	0	0	3
Pre-requisite	Basic	Electrical	and	Electronics	Semester	III	•	•	
	Enginee	ering and App	lied Ph	ysics					
Course Obienting									
Course Objectives:	•								
To provide	e knowledg	e on Sensor P	rinciple	s.					
To provide	e familiarity	with differen	nt senso	rs and their a	oplication in rea	l life.			
• To underst	tand Basics	of IoT, and e	nabling	technologies					
• To design	IoT applica	tions using A	rduino	and Raspberr	y pi.				
Course Outcomes	(CO):								
After completion of		e, students wi	ll be ab	le to					
*					s and principles	of IoT.			
		-		plication deve					
	-	lications usin	-	-	1				
-		ons using Ras	-						
0		one asing rus	poong						
	ata Acquisi	tion and analy	vsis usi	ng Cloud and	Tkinter				
		tion and analy	ysis usi	ng Cloud and	Tkinter	09	Hour	s	
UNIT - I Introduction to Se Optical Sources a Semiconductor las	INTRO ensors: Sen nd Detecto	DUCTION sors, Criteria rs : Electronic	to choc c and Oj	ose a Sensor, (ptical properti	Generation of Ses of semicond	ensors. actor as		ors, I	
UNIT - I Introduction to So Optical Sources a	INTRO ensors: Ser nd Detecto sers, Fiber orque and e sensor, lo	DUCTION sors, Criteria rs : Electronic optic sensors I Pressure s ad cell, torqu	to choo c and Oj , Therr sensors ne senso	ose a Sensor, (ptical properti nal detectors, : Strain gage	Generation of Soles of semicondo Photo multiples, strain gage	ensors. actor as iers, ph beam	sens notoce forc	ors, I ondu e sei	ctiv nsor
UNIT - I Introduction to Se Optical Sources a Semiconductor las detectors. Strain, Force, T piezoelectric force optoelectronic pres	INTRO ensors: Sen nd Detecto sers, Fiber orque and e sensor, lo ssure sensor	DUCTION sors, Criteria rs: Electronic optic sensors I Pressure s ad cell, torqu	to choo c and Oj , Therr sensors ne senso nsors.	ose a Sensor, (ptical properti nal detectors, : Strain gage or, Piezo-resi	Generation of S es of semicondu Photo multipl es, strain gage stive and capac	ensors. actor as iers, ph beam itive pr	sens notoco forc ressur	ors, I ondu e sei re sei	ctive nsor
UNIT - I Introduction to Se Optical Sources a Semiconductor las detectors. Strain, Force, T piezoelectric force optoelectronic pres UNIT - II	INTRO ensors: Sen nd Detecto sers, Fiber orque and e sensor, lo ssure sensor TYPES	DUCTION sors, Criteria rs : Electronic optic sensors I Pressure s ad cell, torqu rs, vacuum set OF SENSOR	to choo c and O ₁ c, Therr sensors ne senso nsors.	ose a Sensor, (ptical properti nal detectors, : Strain gage or, Piezo-resis	Generation of Sones of semiconduces of semiconduces of semiconduces of the semiconductor of t	ensors. actor as iers, ph beam itive pr	sens notoce forc ressur Hour	ors, I ondu e sei re sei	ctiv nsor
UNIT - I Introduction to Se Optical Sources a Semiconductor las detectors. Strain, Force, T piezoelectric force optoelectronic pres UNIT - II Position, Direction	INTRO ensors: Sen nd Detecto sers, Fiber orque and e sensor, lo ssure sensor TYPES n, Displace	DUCTION sors, Criteria rs: Electronic optic sensors I Pressure s ad cell, torqu rs, vacuum set OF SENSOR ment, Level	to choo c and Oj , Therr sensors le senso nsors. S AND sensors	ose a Sensor, (ptical properti nal detectors, : Strain gage or, Piezo-resis O APPLICATI	Generation of Solution es of semicondu Photo multipl es, strain gage stive and capac ONS A Acceleration	ensors. actor as iers, ph beam itive pr 09	sens notoco forc ressur Hour 5.	ors, I onduce sen re sen s	nsor
UNIT - I Introduction to Se Optical Sources a Semiconductor las detectors. Strain, Force, T piezoelectric force optoelectronic press UNIT - II Position, Direction Temperature sen	INTRO ensors: Sen nd Detecto sers, Fiber orque and e sensor, lo ssure sensor TYPES n, Displace isors: ther	DUCTION sors, Criteria rs: Electronic optic sensors I Pressure s ad cell, torqu rs, vacuum set OF SENSOR ment, Level	to choo c and Oj , Therr sensors le senso nsors. S AND sensors	ose a Sensor, (ptical properti nal detectors, : Strain gage or, Piezo-resis O APPLICATI	Generation of Solution es of semicondu Photo multipl es, strain gage stive and capac ONS A Acceleration	ensors. actor as iers, ph beam itive pr 09	sens notoco forc ressur Hour 5.	ors, I onduce sen re sen s	nsor
UNIT - I Introduction to Se Optical Sources a Semiconductor las detectors. Strain, Force, Te piezoelectric force optoelectronic press UNIT - II Position, Direction Temperature sensor	INTRO ensors: Sen nd Detecto sers, Fiber orque and e sensor, lo ssure sensor TYPES n, Displace asors: therr	DUCTION sors, Criteria rs: Electronic optic sensors I Pressure s ad cell, torqu rs, vacuum ser OF SENSOR ment, Level noresistive, t	to choo e and Oj a, Therr sensors ne sensor nsors. SANE sensors hermoe	ose a Sensor, (otical properti nal detectors, : Strain gage or, Piezo-resis • APPLICAT • Velocity and lectric, semio	Generation of Soles of semiconductor and capace Photo multiples, strain gage stive and capace (ONS) A Acceleration conductor and	ensors. actor as iers, ph beam itive pr 09 sensors optical	sens notoc forc ressur Hour s. . Pie	ors, I onduce sen re sen s	nsor
UNIT - I Introduction to Se Optical Sources a Semiconductor las detectors. Strain, Force, T piezoelectric force optoelectronic pres UNIT - II Position, Direction Temperature sensor Wearable Sensors	INTRO ensors: Sen nd Detecto sers, Fiber orque and e sensor, lo ssure sensor TYPES n, Displace isors: therr s: From fibe	DUCTION sors, Criteria rs: Electronic optic sensors I Pressure s ad cell, torque rs, vacuum set OF SENSOR ment, Level noresistive, t	to choo c and Oj d, Therr sensors nsors. RS AND sensors hermoe	ose a Sensor, (otical properti nal detectors, : Strain gage or, Piezo-resis O APPLICATI : Velocity and lectric, semic - Interlaced no	Generation of Soles of semiconduction Photo multiples, strain gage stive and capace ONS A Acceleration conductor and etwork -Textile	ensors. actor as iers, ph beam itive pr 09 sensors optical sensors	sens notoco force ressure Houre s. . Pie	ors, I ondu e ser re ser s zoele	nsor nsor
UNIT - I Introduction to Se Optical Sources a Semiconductor las detectors. Strain, Force, T piezoelectric force optoelectronic pres UNIT - II Position, Direction Temperature sensor Wearable Sensors physiological state	INTRO ensors: Ser nd Detecto sers, Fiber orque and e sensor, lo ssure sensor TYPES n, Displace isors: therr c. s: From fibe monitoring	DUCTION sors, Criteria rs: Electronic optic sensors I Pressure s ad cell, torqu rs, vacuum ser OF SENSOR ment, Level noresistive, t ers to textile s g - Biomechar	to choo c and Oj c, Therr sensors ne sensors ne sensors. SAND sensors hermoe	ose a Sensor, (otical properti nal detectors, : Strain gago or, Piezo-resis • APPLICAT • Velocity and lectric, semic - Interlaced no ssing –Non-ir	Generation of Soles of semiconductor Photo multiples, strain gage stive and capace IONS A Acceleration conductor and etwork -Textile wasive sweat m	ensors. actor as iers, ph beam itive pr 09 sensors optical sensors onitorin	sens notoco force ressure Houre s. . Pie	ors, I ondu e ser re ser s zoele	nsor nsor
UNIT - I Introduction to Se Optical Sources a Semiconductor las detectors. Strain, Force, T piezoelectric force optoelectronic pres UNIT - II Position, Direction Temperature sensor Wearable Sensors	INTRO ensors: Sen nd Detecto sers, Fiber orque and e sensor, lo ssure sensor TYPES n, Displace isors: therr s: From fibe monitoring applications	DUCTION sors, Criteria rs: Electronic optic sensors I Pressure s ad cell, torque s, vacuum sent OF SENSOR ment, Level noresistive, t ers to textile s g - Biomechar . FBG sensor	to choo c and Oj c, Therr sensors le sensor nsors. SANE sensors hermoe ensors in Intel	ose a Sensor, (otical properti nal detectors, : Strain gago or, Piezo-resis • APPLICAT • Velocity and lectric, semic - Interlaced no ssing –Non-ir	Generation of Soles of semiconductor Photo multiples, strain gage stive and capace IONS A Acceleration conductor and etwork -Textile wasive sweat m	ensors. actor as iers, ph beam itive pr 09 sensors optical sensors onitorin anics	sens notoco forc ressur Hour s. . Pie s for ng by	ors, I ondu e ser re ser s zoele	nsor nsor
UNIT - I Introduction to Se Optical Sources a Semiconductor las detectors. Strain, Force, T piezoelectric force optoelectronic press UNIT - II Position, Direction Temperature sensor Wearable Sensors physiological state sensors and other a UNIT - III	INTRO ensors: Ser nd Detecto sers, Fiber orque and e sensor, lo ssure sensor TYPES n, Displace isors: therr :: s: From fibe implications INTRO	DUCTION sors, Criteria rs: Electronic optic sensors I Pressure s ad cell, torqu rs, vacuum ser OF SENSOR ment, Level noresistive, t ers to textile s g - Biomechar . FBG sensor DUCTION to	to choo c and Op c, Therr sensors ne sensors as AND sensors hermoe ensors in al sen in Intel o ToT	ose a Sensor, (otical properti nal detectors, : Strain gage or, Piezo-resis • APPLICAT • Velocity and lectric, semic - Interlaced ne nsing –Non-ir ligent Clothir	Generation of Soles of semiconductor multiples, strain gage stive and capace to the structure of the sole of the s	ensors. actor as iers, ph beam itive pr 09 sensors optical sensors onitorin anics 09	sens forc ressur Hour s. . Pie s for ng by Hour	ors, I ondu e ser re ser s zoele texti	ctive nsor nsor cctrie le
UNIT - I Introduction to Se Optical Sources a Semiconductor las detectors. Strain, Force, T piezoelectric force optoelectronic pres UNIT - II Position, Direction Temperature sensor Wearable Sensors physiological state sensors and other a UNIT - III Introduction to In	INTRO ensors: Sen nd Detecto sers, Fiber orque and e sensor, lo ssure sensor TYPES n, Displace asors: therr : s: From fibe monitoring applications INTRO aternet of T	DUCTION sors, Criteria rs: Electronic optic sensors I Pressure s ad cell, torque s, vacuum ser OF SENSOR ment, Level noresistive, t ers to textile s g - Biomechar . FBG sensor DUCTION to hings: Chara	to choo c and Oj c, Therr sensors ne sensors ne sensors hermoe ensors hermoe in Intel o ToT cteristic	ose a Sensor, (ptical properti- nal detectors, : Strain gage or, Piezo-resis • APPLICATI • Velocity and lectric, semic - Interlaced no nsing –Non-ir ligent Clothir	Generation of Soles of semiconductor Photo multiples, strain gage stive and capace IONS I Acceleration conductor and etwork -Textile wasive sweat mag and Biomech	ensors. actor as iers, ph beam itive pr 09 sensors optical sensors onitorin anics 09	sens forc ressur Hour s. . Pie s for ng by Hour	ors, I ondu e ser re ser s zoele texti	ctiv nson nson cctrie le
UNIT - I Introduction to Se Optical Sources a Semiconductor lass detectors. Strain, Force, T piezoelectric force optoelectronic press UNIT - II Position, Direction Temperature sensor Wearable Sensors physiological state sensors and other a UNIT - III Introduction to In and Protocols, Ena	INTRO ensors: Ser nd Detecto sers, Fiber orque and e sensor, lo ssure sensor TYPES n, Displace isors: there s: From fibe monitoring applications INTRO iternet of T abling Tech	DUCTION sors, Criteria rs: Electronic optic sensors I Pressure s ad cell, torque s, vacuum set OF SENSOR ment, Level noresistive, t ers to textile s g - Biomechar . FBG sensor DUCTION to hings: Charac nologies for I	to choo c and Oj c, Therr sensors ie sensor nsors. S AND sensors hermoe in Intel o ToT cteristic oT, IoT	ose a Sensor, (optical properti- nal detectors, : Strain gage or, Piezo-resis : APPLICAT : Velocity and lectric, semic - Interlaced ne nsing –Non-ir ligent Clothir : s of IoT, Desi levels and Io	Generation of Soles of semiconduction Photo multiples, strain gage stive and capace (ONS d Acceleration conductor and etwork -Textile wasive sweat m and Biomech gn principles of T vs M2M.	ensors. actor as iers, ph beam itive pr 09 sensors optical sensors onitorin anics 09 ToT, Io	sens forc ressur Hour s. . Pie s for ng by Hour T Ar	ors, I ondu e ser re ser s zoele texti	ctiv nson nson cctrie le
UNIT - I Introduction to Se Optical Sources a Semiconductor las detectors. Strain, Force, T piezoelectric force optoelectronic pres UNIT - II Position, Direction Temperature sensor Wearable Sensors physiological state sensors and other a UNIT - III Introduction to In	INTRO ensors: Sen nd Detecto sers, Fiber orque and e sensor, lo ssure sensor TYPES n, Displace sors: therr s: From fibe monitoring applications INTRO iternet of T abling Tech odology: D	DUCTION sors, Criteria rs: Electronic optic sensors I Pressure s ad cell, torque s, vacuum set OF SENSOR ment, Level noresistive, t ers to textile s g - Biomechar . FBG sensor DUCTION to hings: Charac nologies for I	to choo c and Oj c, Therr sensors ie sensor nsors. S AND sensors hermoe in Intel o ToT cteristic oT, IoT	ose a Sensor, (optical properti- nal detectors, : Strain gage or, Piezo-resis : APPLICAT : Velocity and lectric, semic - Interlaced ne nsing –Non-ir ligent Clothir : s of IoT, Desi levels and Io	Generation of Soles of semiconduction Photo multiples, strain gage stive and capace (ONS d Acceleration conductor and etwork -Textile wasive sweat m and Biomech gn principles of T vs M2M.	ensors. actor as iers, ph beam itive pr 09 sensors optical sensors onitorin anics 09 ToT, Io	sens forc ressur Hour s. . Pie s for ng by Hour T Ar	ors, I ondu e ser re ser s zoele texti	ctiv nson nson cctri le
UNIT - I Introduction to Se Optical Sources a Semiconductor las detectors. Strain, Force, T piezoelectric force optoelectronic pres UNIT - II Position, Direction Temperature sensor Wearable Sensors physiological state sensors and other a UNIT - III Introduction to In and Protocols, Ena IoT Design Metho	INTRO ensors: Sen nd Detecto sers, Fiber orque and e sensor, lo ssure sensor TYPES n, Displace isors: therr : s: From fibe monitoring applications INTRO tternet of T bbling Tech odology: Do Servers	DUCTION sors, Criteria rs: Electronic optic sensors I Pressure s ad cell, torque s, vacuum set OF SENSOR ment, Level noresistive, t ers to textile s g - Biomechar . FBG sensor DUCTION to hings: Charac nologies for Id esign methode	to choo c and Oj c, Therr sensors le sensors nsors. SANE sensors hermoe in Intel o ToT cteristic ooT, IoT ology, C	ose a Sensor, (optical properti- nal detectors, : Strain gage or, Piezo-resis • APPLICATI • Velocity and lectric, semic - Interlaced ne nsing –Non-ir ligent Clothir : s of IoT, Desi levels and Io Challenges in	Generation of Soles of semiconductor Photo multiples, strain gage stive and capace (ONS) A Acceleration conductor and etwork -Textile wasive sweat mag and Biomech gn principles of T vs M2M. IoT Design, IoT	ensors. actor as iers, ph beam itive ph 09 sensors optical sensors onitorin anics 09 ToT, Io	sens force ressur- Hour s. . Pie s for ng by Hour T Ar n	ors, I ondu e ser re ser s zoele texti s chited	ctiv nson nson ctri le
UNIT - I Introduction to Se Optical Sources a Semiconductor las detectors. Strain, Force, T piezoelectric force optoelectronic press UNIT - II Position, Direction Temperature sensor Wearable Sensors physiological state sensors and other a UNIT - III Introduction to In and Protocols, Ena IoT Design Methor	INTRO ensors: Ser nd Detecto sers, Fiber orque and e sensor, lo ssure sensor TYPES n, Displace sors: therr s: From fibe monitoring applications INTRO ternet of T bling Tech odology: D Servers	DUCTION sors, Criteria rs: Electronic optic sensors I Pressure s ad cell, torque s, vacuum ser OF SENSOR ment, Level noresistive, t ers to textile s g - Biomechar . FBG sensor DUCTION to hologies for Id esign methodo on to Arduino	to choo c and Oj c, Therr sensors nsors. SANE sensors hermoe sensors hermoe in Intel o ToT cteristic oT, IoT ology, C	ose a Sensor, (optical properti- nal detectors, : Strain gage or, Piezo-resis • APPLICATI • Velocity and lectric, semic - Interlaced no- nsing –Non-ir ligent Clothin res of IoT, Desi levels and Io Challenges in no IDE, Basic	Generation of Soles of semiconductor Photo multiples, strain gage stive and capace (ONS) A Acceleration conductor and etwork -Textile wasive sweat mag and Biomech gn principles of T vs M2M. IoT Design, IoT	ensors. actor as iers, ph beam itive ph 09 sensors optical sensors onitorin anics 09 ToT, Io	sens force ressur- Hour s. . Pie s for ng by Hour T Ar n	ors, I ondu e ser re ser s zoele texti s chited	ctiv nson nson ctri le

Comupter Science & Engineering (Internet of Things)

Basics of Raspberry Pi:Introduction to Raspberry pi, Installation of NOOBS on SD Card, Installation of Raspbian on SD Card, Terminal Commands, Installation of Libraries on Raspberry Pi, Getting the static IP address of Raspberry Pi, Run a Program on Raspberry Pi, Installing the Remote Desktop Server, Pi Camera, Face Recognition using Raspberry Pi, Installation of I2C driver on Raspberry Pi, SPI (serial peripheral interface) with Raspberry Pi, Programming a Raspberry Pi, Play with LED and Raspberry Pi, Reading the digital input, Reading an edge triggered input, Interfacing of Relay with Raspberry Pi, Interfacing of LCD with Raspberry Pi, Interfacing of UCD with Raspberry Pi, Interfacing of ultrasonic sensor with Raspberry Pi, Interfacing of camera with Raspberry Pi, Interfacing of ultrasonic sensor with Raspberry Pi, Interfacing of camera with Raspberry Pi, Interfacing of LCD with Raspberry Pi, Interfacing of ultrasonic sensor with Raspberry Pi, Interfacing of camera with Raspberry Pi, Interfacing of ultrasonic sensor with Raspberry Pi, Interfacing of camera with Raspberry Pi, Interfacing of ultrasonic sensor with Raspberry Pi, Interfacing of camera with Raspberry Pi.

UNIT - V D

DATA ACQUISTION AND CLOUD

09 Hours

Data Acquisition with Python and Tkinter: Basics-CSV file, Storing Arduino data with CSV file, Plotting random numbers using matplotlib, Plotting real-time from Arduino, Integrating the plots in the Tkinter window.

Connecting to the Cloud: Smart IoT Systems, DHT11 Data Logger with ThingSpeak Server, Ultrasonic Sensor Data Logger with ThingSpeak Server, Air Quality Monitoring System and Data Logger with ThingSpeak Server, Landslide Detection and Disaster Management System, Smart Motion Detector and Upload Image to gmail.com.

Textbooks:

- 1. J. Fraden, Handbook of Modern Sensors: Physical, Designs, and Applications, AIP Press, Springer, Fourth Edition, 2010.
- 2. Rajesh Singh, Anita Gehlot, Lovi Raj Gupta, Bhupendra Singh, Mahendra Swain, Internet of Things with Raspberry Pi and Arduino, CRC Press, 2019.

Reference Books:

- 1. D. Patranabis, Sensors and Transducers, PHI Publication, New Delhi, 2003.
- 2. Jan Holler and Vlasios Tsiatsis, From Machine-to-Machine to the Internet of Things Introduction to a New Age of Intelligence, Elsevier Ltd., 2014.
- 3. David Hanes and Gonzalo Salgueiro, IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things, Cisco Press, 2017

Online Learning Resources:

- <u>https://www.guru99.com/iot-tutorial.html</u>
- https://developer.ibm.com/technologies/iot/tutorials/

Course Code	DIGITAL ELECTRONI		L	T	P	C
20a04304P	MICROPROCESSORS	LAB	0	0	3	1.5
Pre-requisite	Basic Electronics Engineering	Semester		I	II	
110 requisite	Dusie Lieen onies Engineering	Semester		-		
Course Objectives:						
	nd all the concepts of Logic Gates and Bo					
	out Combinational Logic and Sequential I					
	gic circuits using Programmable Logic D					
 To understar 	nd basics of 8086 Microprocessor and 80	51 Microcontroller				
	nd architecture of 8086 Microprocessor a		troller.			
	sembly Language Programming of 8086 a	and 8051.				
Course Outcomes (C						
	this course, the student will be able to:					
	Logic circuit using basic concepts of Boo					
	Logic circuit using basic concepts of PLD					
	develop any application using 8086 Micro					
	develop any application using 8051 Micro	ocontroller.				
List of Experiment	3.					
Notes Minimum of 1	$2(\zeta, \zeta)$ experiments shall be seen dusted (ware hath the cost	~ ~ ~			
	2 (6+6) experiments shall be conducted f	rom both the secti	ons			
given below:						
	RONICS: on of Truth Table for AND, OR, NOT, N	AND, NOR				
 Verificati and EX-OR Realisatic and only NO Karnaugh Verificati Implemer Implemer Four Bit I Four Bit I 	on of Truth Table for AND, OR, NOT, N gates. In of NOT, AND, OR, EX-OR gates with OR gates. map Reduction and Logic Circuit Implen on of DeMorgan's Laws. Itation of Half-Adder and Half-Subtractor Itation of Full-Adder and Full-Subtractor. Binary Adder Binary Subtractor using 1's and 2's Comp	only NAND nentation. r. olement.				
 Verificati and EX-OR Realisatic and only NO Karnaugh Verificati Implemer Implemer Four Bit I Four Bit I 	on of Truth Table for AND, OR, NOT, N gates. n of NOT, AND, OR, EX-OR gates with OR gates. map Reduction and Logic Circuit Implen on of DeMorgan's Laws. Itation of Half-Adder and Half-Subtractor Itation of Full-Adder and Full-Subtractor. Binary Adder	only NAND nentation. r. olement.				
 Verificati and EX-OR Realisatic and only NO Karnaugh Verificati Implemer Implemer Four Bit I Four Bit I 	on of Truth Table for AND, OR, NOT, N gates. In of NOT, AND, OR, EX-OR gates with OR gates. map Reduction and Logic Circuit Implen on of DeMorgan's Laws. Itation of Half-Adder and Half-Subtractor Itation of Full-Adder and Full-Subtractor. Binary Adder Binary Subtractor using 1's and 2's Comp	only NAND nentation. r. olement.				
 Verificati and EX-OR Realisatic and only NO Karnaugh Verificati Implemer Implemer Four Bit I Four Bit I 	on of Truth Table for AND, OR, NOT, N gates. n of NOT, AND, OR, EX-OR gates with OR gates. map Reduction and Logic Circuit Implen on of DeMorgan's Laws. ttation of Half-Adder and Half-Subtractor ttation of Full-Adder and Full-Subtractor. Binary Adder Binary Subtractor using 1's and 2's Comp ORS (8086 Assembly Language Progra ition and Subtraction.	only NAND nentation. r. olement.				
 Verificati and EX-OR Realisatic and only NO Karnaugh Verificati Implemer Implemer Four Bit I Four Bit I Four Bit I 8. Four Bit I 8. Four Bit I 	on of Truth Table for AND, OR, NOT, N gates. n of NOT, AND, OR, EX-OR gates with OR gates. map Reduction and Logic Circuit Implen on of DeMorgan's Laws. ttation of Half-Adder and Half-Subtractor ttation of Full-Adder and Full-Subtractor. Binary Adder Binary Subtractor using 1's and 2's Comp ORS (8086 Assembly Language Progra ition and Subtraction. dition.	only NAND nentation. r. olement.				
 Verificati and EX-OR Realisatic and only NO Karnaugh Verificati Implemer Implemer Four Bit I Four Bit I Four Bit I 8. Four Bit I MICROPROCESS 8 Bit Add 2. 16 Bit Add 	on of Truth Table for AND, OR, NOT, N gates. In of NOT, AND, OR, EX-OR gates with OR gates. map Reduction and Logic Circuit Implen on of DeMorgan's Laws. Itation of Half-Adder and Half-Subtractor Itation of Full-Adder and Full-Subtractor. Binary Adder Binary Subtractor using 1's and 2's Comp ORS (8086 Assembly Language Progra ition and Subtraction. dition.	only NAND nentation. r. olement.				
 Verificati and EX-OR Realisatic and only NO Karnaugh Verificati Implemer Implemer Four Bit I Four Bit I Four Bit I 8. Four Bit I MICROPROCESS 8 Bit Add 16 Bit Add BCD Add 	on of Truth Table for AND, OR, NOT, N gates. In of NOT, AND, OR, EX-OR gates with OR gates. map Reduction and Logic Circuit Implen on of DeMorgan's Laws. Itation of Half-Adder and Half-Subtractor Itation of Full-Adder and Full-Subtractor. Binary Adder Binary Subtractor using 1's and 2's Comp ORS (8086 Assembly Language Progra ition and Subtraction. dition. lition .	only NAND nentation. r. olement.				
 Verificati and EX-OR Realisatic and only NC Karnaugh Verificati Implemer Implemer Four Bit I Four Bit I Four Bit I Bit Add 16 Bit Add BCD Add 8 Bit Mul 8 Bit Divi 	on of Truth Table for AND, OR, NOT, N gates. n of NOT, AND, OR, EX-OR gates with OR gates. map Reduction and Logic Circuit Implen on of DeMorgan's Laws. Itation of Half-Adder and Half-Subtractor. Itation of Full-Adder and Full-Subtractor. Binary Adder Binary Subtractor using 1's and 2's Comp ORS (8086 Assembly Language Progra ition and Subtraction. dition. Ition. Ition. Ition.	only NAND nentation. r. olement.				
 Verificati and EX-OR Realisatic and only NC Karnaugh Verificati Implemer Implemer Four Bit I Four Bit I Four Bit I Bit Add BCD Add BCD Sub 8 Bit Mul 8 Bit Divi 	on of Truth Table for AND, OR, NOT, N gates. n of NOT, AND, OR, EX-OR gates with OR gates. map Reduction and Logic Circuit Implen on of DeMorgan's Laws. tation of Half-Adder and Half-Subtractor tation of Full-Adder and Full-Subtractor. Binary Adder Binary Subtractor using 1's and 2's Comp ORS (8086 Assembly Language Progra ition and Subtraction. dition. tition.	only NAND nentation. r. olement.				
and EX-OR 2. Realisation and only NC 3. Karnaugh 4. Verificati 5. Implemer 6. Implemer 7. Four Bit I 8. Four Bit I 8. Four Bit I 8. Four Bit I 1. 8 Bit Add 2. 16 Bit Add 3. BCD Add 4. BCD Sub 5. 8 Bit Mul 6. 8 Bit Divi 7. Searching 8. Sorting in	on of Truth Table for AND, OR, NOT, N gates. n of NOT, AND, OR, EX-OR gates with OR gates. map Reduction and Logic Circuit Implen on of DeMorgan's Laws. ttation of Half-Adder and Half-Subtractor ttation of Full-Adder and Full-Subtractor. Binary Adder Binary Subtractor using 1's and 2's Comp ORS (8086 Assembly Language Progra ition and Subtraction. dition. tition . traction. tiplication. sion. for an Element in an Array. Ascending and Descending Orders.	only NAND nentation. c. olement. amming)				
 Verificati and EX-OR Realisatic and only NC Karnaugh Verificati Implemer Implemer Four Bit I Four Bit I Four Bit I Bit Add 16 Bit Add BCD Add BCD Sub 8 Bit Divit Searching Sorting in 	on of Truth Table for AND, OR, NOT, N gates. n of NOT, AND, OR, EX-OR gates with OR gates. map Reduction and Logic Circuit Implen on of DeMorgan's Laws. ttation of Half-Adder and Half-Subtractor ttation of Full-Adder and Full-Subtractor. Binary Adder Binary Subtractor using 1's and 2's Comp ORS (8086 Assembly Language Progra ition and Subtraction. dition. tition . traction. tiplication. sion.	only NAND nentation. c. olement. amming)				

Comupter Science & Engineering (Internet of Things)

1.M. Morris Mano, Michael D. Ciletti, Digital Design, Pearson Education, 5th Edition, 2013.

- 2. Anil K. Maini, Digital Electronics: Principles, Devices and Applications, John Wiley & Sons, Ltd., 2007.
- 3. N. Senthil Kumar, M. Saravanan, S. Jeevanathan, Microprocessor and
- Microcontrollers, Oxford Publishers, 2010.
- 4. Advanced microprocessors and peripherals-A.K ray and K.M.Bhurchandani, TMH, 2nd edition, 2006.

Reference Books:

- 1. Thomas L. Floyd, Digital Fundamentals A Systems Approach, Pearson, 2013.
- 2. Charles H. Roth, Fundamentals of Logic Design, Cengage Learning, 5th, Edition, 2004.
- 3. D.V.Hall, Microprocessors and Interfacing. TMGH, 2nd edition, 2006.

4. Kenneth. J. Ayala, The 8051 microcontroller, 3rd edition, Cengage Learning, 2010.

Online Learning Resources/Virtual Labs:

https://www.vlab.co.in/

Course Code	Comupter Science & Engineering Advanced Data Structures and	d Algorithms Lab	Ĺ	Т	P	С
20A05301P	(Common to CSE, IT, CSE(DS		0	0	3	1.5
	(AI), CSE (AI & ML) an					
Pre-requisite	Basics of Data Structures	Semester	III			
		·				
Course Objectives:						
	structures for various applications.					
	different operations of data structures					
	plications using Greedy, Divide and C					
	applications for backtracking algorith	ms using relevant data	l struc	tures	5.	
Course Outcomes (
	the course, students will be able to					
	and apply data structure operations.					
	and apply non-linear data structure o	perations.				
	dy, divide and conquer algorithms.					
	namic programming algorithms for va					
	nd apply backtracking algorithms, fur	rther able to understand	nd no	n-de	term	nisti
algorithms.						
List of Experiments			г			
	m to implement the following operation					
a) Insert	b) Delete c) Sear					
	m to perform a Binary Search for a gi	ven set of integer valu	es.			
	m to implement Splay trees. m to implement Merge sort for the giv	integer volu	20			
	m to implement Quicksort for the give					
	m to find the solution for the knapsacl			math	od	
	m to find minimum cost spanning tree			meth	ou.	
	m to find minimum cost spanning tree					
	m to find a single source shortest path		1111111			
	m to find the solution for job sequence		hlems			
	m to find the solution for a 0-1 knapsa				ramm	ning
	in to solve Sum of subsets problem					
backtracking.						
e	Queen's problem using Back Tracking					
References:						
	"Introduction to Programming using H	Python", Pearson.				
	David Julian, "Python Data Structures		kt Pu	blish	ers,2	017.
	e, "Data Structures and Algorithms us					
	sources/Virtual Labs:					
http://cse01-iiith.vla						
<u>1111.//CSCU1-11111.VIa</u>						
http://peterindia.net	/Algorithms html					

Course	e Code	SENSORS AND INTERNET OF THINGS	L	Т	Р	С
20A35.	301P	LAB	1	0	2	2
Pre-re	quisite	Basic Electrical and Electronics Engineering and	Semester	III	•	
		Applied Physics, Sensors and Internet of Things				
	Objectives:					
	*	sic skills on IoT sensor functionality.				
		functionalities of Sensorswith micro controllers.				
		e skills on IoT application development				
Course	Outcomes (
٠	•	ferent types of Sensors and study their functionality in				
٠		te skills in connecting peripherals to Arduino/Raspberr	ry Pi for data	excha	ange.	
٠	-	Cloud platform to upload and analyze any sensor data				
٠		te skills in connecting GSM, GPS, Gateways to micro o	controllers an	d perf	form	Dat
	Managemen					
•		nplete working IoT system involving prototyping, prog	gramming an	d data	anal	ysis
List of	Experiments	3:				
1.	Introduction	n to Raspberry Pi platform and programming				
2.	Measuring	Temperature, Pressure, and Humidity in real time usi	ng Sensors u	sing I	Rasph	berr
2.	Pi.	Tomperature, Tressare, and Trainary in four time as		51116 1	uspe	,011
3.	Study the Raspberry I	Light, Distance, Motion, Accelerometer, Position Pi.	Data using	Sense	ors u	isin
4.	Log Data u	sing Raspberry PI and upload to the cloud platform (u	using Tkinte	r)		
5.	Develop an	IoT application using Raspberry Pi for fire alarm.				
6.	Develop an Pi.	IOT application to measure soil moisture, air and wa	ater quality u	sing I	Raspt	berr
7.	1	IoT application using Raspberry Pi to monitor heartb to upload health information to cloud	eat, blood pr	essure	e, etc.	of
8.	Build Smar	t Parking application using IoT Platform				
	a) Mo	onitored Parameters: Vehicle detection				
	b) Fur	nction1: Provide information to user about free space i	n parking slo	ots		
9.	Build Smar	t Home system using IoT Platform				
		onitored Parameters: People presence, Outside ambient			aram	eter
		nction1: Control Home appliances through manual app				
		nction2: Intelligently control appliances based on mon	itoring paran	neters		
Referei	nces:					
	ArshdeepBa VPI Publicat	hga and Vijay Madisetti, Internet of Things(A hands tions, 2014.	on approacl	n),Firs	st Edi	tio

Comupter Science & Engineering (Internet of Things)

- 2. Adrian McEwen and Hakin Cassimally, Designing the Internet of Things, Wiley India.
- 3. Massimo Banzi and Michael Shiloh, *Getting Started with Arduino*, Third Edition, Maker Media.
- 4. Matt Richardson and Shawn Wallace, *Getting Started with Raspberry Pi*, O'Reilly, 2014.

Online Learning Resources/Virtual Labs:

- 1. https://www.tutorialspoint.com/internet_of_things/index.htm
- 2. https://www.javatpoint.com/iot-internet-of-things
- 3. http://www.cse.wustl.edu/~jain/cse570-15/ftp/iot_prot/index.html

Course Code	Programming Arduino		L	Т	Р	С
20A35302			1	0	2	2
Pre-requisite		Semester	III			
Course Objectives:						
	nd the fundamentals of Internet of Things a	and its building bloc	cks al	ongv	with t	heir
characteristic	CS					
• To understar	nd the recent application domains of IoT in	day-to-day life				
• To understar	nd the protocols and standards designed for	r IoT				
Course Outcomes (C	:0):					
After completion of	the course, students will be able to					
Understand t	the programming of basic Arduino example	es				
Develop pro	totype circuits and connect them to the Arc	duino				
• Program the	Arduino microcontroller to make the circu	iits work				
• Explore the	given example code and online resources for	or extending know	ledge	abou	t the	
capabilities of	of the Arduino					
	List of Experiments:					
Module-1: Arduino						
Introduction	to Arduino					
Pin configur	ation and architecture.					
• Device and p	platform features.					
• Concept of d	ligital and analog ports.					
• Familiarizing	g with Arduino Interfacing Board					
• Introduction	to Embedded C and Arduino platform					
Module-2: Arduino	Displays					
Working wit	h Serial Monitor					
• Line graph v	via serial monitor					
• Interfacing a	8 bit LCD to Arduino					
Fixed one-lin	ne static message display.					
Running mea	ssage display.					
• Using the LO	CD Library of Arduino.					
Module-3: Arduino	Sensors					
• Arduino – H	umidity Sensor					
• Arduino – Te	emperature Sensor					
• Arduino – W	/ater Detector / Sensor					
• Arduino – P	IR Sensor					
• Arduino – U	Itrasonic Sensor					
• Arduino – C	onnecting Switch (Magnetic relay switches	s)				
Case Study-1: Ardu	uno Ping Pong Game					

Comupter Science & Engineering (Internet of Things)

Design ping pong game using an Arduino Uno and Colour OLED display. The main objective of this game is to gain the highest score. This game is an interesting addictive fun game. This is a human vs human two-player game, and the players have to play from both sides with the help of up and down keys. The game ends whenever the player fails to touch the ball and it touches the other part of the screen. Also, the player must play the game turn-wise and use some strategy to win the game. Source- https://www.youtube.com/watch?v=ZRL0GUqebFs

Case Study-2: Control Light & Fan with Clap using Arduino

Design a IoT application which controls the home appliances like Fan, TV, light and etc using sound effect. This project is very useful for elderly and differently abled persons to control their room with depending one other.

Source link: <u>https://www.youtube.com/watch?v=hzUFnP3Xt7c</u>

Case Study -3: Rain Alert System using Arduino

Design a system to alert the people when is raining. This system is very useful for vehicles to switch on the vipers as well as many places where the device working based on rain. Source link: https://www.youtube.com/watch?v=YlIH1ti4Vy0

Case Study -4: Theft Alert System using Arduino

Design a system to alert the people using IR sensor when the motion is detected. This system is useful for high security areas. This system Source link: <u>https://www.youtube.com/watch?v=zOmsl-dTq8M</u>

Case Study-5: Water Level Meter using Water Level Sensor

Design a sensor which can sense the water level n tanks where the motor pumps are used. There is no specific method to check the level of the water.

Source Link: https://www.youtube.com/watch?v=n7WRi5U5lQk

References:

- <u>https://www.tutorialspoint.com/internet_of_things/index.htm</u>
- <u>https://www.javatpoint.com/iot-internet-of-things</u>
- <u>https://www.guru99.com/iot-tutorial.html</u>

Online Learning Resources/Virtual Labs:

Course Code	ENVIRONMENTAL S	CIENCE	L	Т	Р	C
20A99201	(Common to All Branches	of Engineering)	3	0	0	0
Duo noquisito	NIL	Somestor				<u> </u>
Pre-requisite	NIL	Semester			III	
Course Objectives:			I			
• To make the	students to get awareness on environ	ment				
	nd the importance of protecting natur		tems fo	r futur	e gen	ierations
	a causes due to the day to day activiti					
• To save earth	n from the inventions by the engineer	·S.				
Course Outcomes (CO)•					
Course Outcomes (f the course, the student will be able t	0				
	sciplinary nature of environmental st		newabl	e and	nonre	newable
resources.						
Understand flo	w and bio-geo- chemical cycles and	ecological pyramids				
• Understand va	arious causes of pollution and solution	id waste manageme	ent and	l relat	ed pr	eventive
measures.						
	nwater harvesting, watershed manag	gement, ozone layer	deplet	tion a	nd wa	ste land
reclamation.		1. 10				
• Casus of popul	lation explosion, value education and	l welfare programme	s.		0	Hrs
	ature Of Environmental Studies:	Definition Scone	and Im	nortan		
Public Awareness.	ature of Environmental Studies.	- Definition, Scope		portan		veeu 101
problems – Forest res – Mining, dams and of surface and groun Mineral resources: U case studies – Food effects of modern age	: Renewable and non-renewable a sources – Use and over – exploitation other effects on forest and tribal peop nd water – Floods, drought, conflict se and exploitation, environmental en resources: World food problems, con- riculture, fertilizer-pesticide problem	a, deforestation, case ple – Water resource is over water, dams ffects of extracting a hanges caused by a	studies s – Use – bene nd usin gricultu	– Tim and c fits ar g mine and	iber ex over ut id pro eral re l over	xtraction ilization oblems – esources, grazing,
resources: UNIT - II					1	2 Hrs
	bt of an ecosystem. – Structure and fu	inction of an ecosyst	em _ P	roduce		
and decomposers – E ecological pyramids ecosystem:	Energy flow in the ecosystem – Ecolo – Introduction, types, characteristic f	ogical succession – I	Food ch	ains, f	food w	vebs and
	ecosystem.					
	nd ecosystem					
	ecosystem	ivera econa estuar	iaa)			
d. Aquatic	e ecosystems (ponds, streams, lakes, r	ivers, oceans, estuar	ies)			
 Bio-geographical c ethical, aesthetic and diversity nation – Ho man-wildlife conflict and Ex-situ conserva 	s Conservation : Introduction 0 Defilassification of India – Value of biodi option values – Biodiversity at glob ot-sports of biodiversity – Threats to ts – Endangered and endemic species tion of biodiversity.	versity: consumptive oal, National and loc biodiversity: habitat	e use, Pr al level t loss, p	oduct s – In boachi	ive use dia as ng of	e, social, a mega- wildlife,
UNIT - III					8	Hrs

Comupter Science & Engineering (Internet of Things)

Environmental Pollution: Definition, Cause, effects and control measures of :

- a. Air Pollution.
- b. Water pollution
- c. Soil pollution
- d. Marine pollution
- e. Noise pollution
- f. Thermal pollution
- g. Nuclear hazards

Solid Waste Management: Causes, effects and control measures of urban and industrial wastes – Role of an individual in prevention of pollution – Pollution case studies – Disaster management: floods, earthquake, cyclone and landslides.

UNIT - IV

10 Hrs

Social Issues and the Environment: From Unsustainable to Sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns. Case studies – Environmental ethics: Issues and possible solutions – Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case Studies – Wasteland reclamation. – Consumerism and waste products. – Environment Protection Act. – Air (Prevention and Control of Pollution) Act. – Water (Prevention and control of Pollution) Act. – Water in enforcement of environmental legislation – Public awareness.

UNIT - V

8 Hrs

Human Population And The Environment: Population growth, variation among nations. Population explosion – Family Welfare Programmes. – Environment and human health – Human Rights – Value Education – HIV/AIDS – Women and Child Welfare – Role of information Technology in Environment and human health – Case studies.

Field Work: Visit to a local area to document environmental assets River/forest grassland/hill/mountain – Visit to a local polluted site-Urban/Rural/Industrial/Agricultural Study of common plants, insects, and birds – river, hill slopes, etc..

Textbooks:

- 1. Text book of Environmental Studies for Undergraduate Courses ErachBharucha for University Grants Commission, Universities Press.
- 2. Palaniswamy, "Environmental Studies", Pearson education
- 3. S.AzeemUnnisa, "Environmental Studies" Academic Publishing Company
- 4. K.Raghavan Nambiar, "Text book of Environmental Studies for Undergraduate Courses as per UGC model syllabus", Scitech Publications (India), Pvt. Ltd.

Reference Books:

- 1. Deeksha Dave and E.Sai Baba Reddy, "Textbook of Environmental Science", Cengage Publications.
- 2. M.Anji Reddy, "Text book of Environmental Sciences and Technology", BS Publication.
- 3. J.P.Sharma, Comprehensive Environmental studies, Laxmi publications.
- 4. J. Glynn Henry and Gary W. Heinke, "Environmental Sciences and Engineering", Prentice hall of India Private limited
- 5. G.R.Chatwal, "A Text Book of Environmental Studies" Himalaya Publishing House
- 6. Gilbert M. Masters and Wendell P. Ela, "Introduction to Environmental Engineering and Science, Prentice hall of India Private limited.