

DEPARTMENT OF CSE - DATA SCIENCE

COURSE STRUCTURE AND SYLLABUS For UG – R20

B. Tech - COMPUTER SCIENCE AND ENGINEERING with Specialization

DATA SCIENCE

(Applicable for batches admitted from 2020-2021)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA - 533 003, Andhra Pradesh, India

DEPARTMENT OF CSE - DATA SCIENCE

COURSE STRUCTURE

	I Year – I SEMESTER							
S. No	Course Code	Courses	L	Т	Р	Credits		
1	HS1101	Communicative English	3	0	0	3		
2	BS1101	Mathematics – I	3	0	0	3		
3	BS1102	Applied Chemistry	3	0	0	3		
4	ES1101	Programming for Problem Solving using C	3	0	0	3		
5	ES1102	Computer Engineering Workshop	1	0	4	3		
6	HS1102	English Communication Skills Laboratory	0	0	3	1.5		
7	BS1103	Applied Chemistry Lab	0	0	3	1.5		
8	ES1103	Programming for Problem Solving using C Lab	0	0	3	1.5		
9	MC1101	Environmental Science*	2	0	0	0		
	Total Credits					19.5		

	I Year – II SEMESTER							
S. No	Course Code	Courses	L	Т	Р	Credits		
1	BS1201	Mathematics – II	3	0	0	3		
2	BS1202	Applied Physics	3	0	0	3		
3	ES1201	Digital Logic Design	3	0	0	3		
4	ES1202	Python Programming	3	0	0	3		
5	CS1201	Data Structures	3	0	0	3		
6	BS1203	Applied Physics Lab	0	0	3	1.5		
7	ES1203	Python Programming Lab	0	0	3	1.5		
8	CS1202	Data Structures Lab	0	0	3	1.5		
9	MC1201	Constitution of India *	2	0	0	0		
	Total Credits				1	19.5		

*Internal Evaluation

DEPARTMENT OF CSE - DATA SCIENCE

I Voor II Somostor		L	Τ	Р	С		
I Year - II Semester		3	0	0	3		
MATHEMATICS - II (BS1201)							

Course Objectives:

- To instruct the concept of Matrices in solving linear algebraic equations
- To elucidate the different numerical methods to solve nonlinear algebraic equations
- To disseminate the use of different numerical techniques for carrying out numerical integration. •
- To equip the students with standard concepts and tools at an intermediate to advanced level mathematics to develop the confidence and ability among the students to handle various real world problems and their applications.

Course Outcomes: At the end of the course, the student will be able to

- develop the use of matrix algebra techniques that is needed by engineers for practical applications (L6)
- solve system of linear algebraic equations using Gauss elimination, Gauss Jordan, Gauss Seidel (L3) •
- evaluate the approximate roots of polynomial and transcendental equations by different algorithms (L5)
- apply Newton's forward & backward interpolation and Lagrange's formulae for equal and unequal intervals (L3)
- apply numerical integral techniques to different Engineering problems (L3)
- apply different algorithms for approximating the solutions of ordinary differential equations with initial conditions to its analytical computations (L3)

UNIT – I: Solving systems of linear equations, Eigen values and Eigen vectors: (10hrs)

Rank of a matrix by echelon form and normal form - Solving system of homogeneous and nonhomogeneous linear equations - Gauss Eliminationmethod- Eigenvalues and Eigen vectors and properties (article-2.14 in text book-1).

Unit – II: Cayley–Hamilton theorem and Quadratic forms:

Cayley-Hamilton theorem (without proof) – Applications – Finding the inverse and power of a matrix by Cayley-Hamilton theorem - Reduction to Diagonal form - Quadratic forms and nature of the quadratic forms - Reduction of quadratic form to canonical forms by orthogonal transformation. Singular values of a matrix, singular value decomposition (text book-3).

UNIT – III: Iterative methods:

Introduction-Bisection method-Secant method - Method of false position-Iteration method - Newton-Raphson method (One variable and simultaneous Equations) - Jacobi and Gauss-Seidel methods for solving system of equations numerically.

UNIT – IV: Interpolation:

Introduction- Errors in polynomial interpolation - Finite differences- Forward differences- Backward differences - Central differences - Relations between operators - Newton's forward and backward formulae for interpolation – Interpolation with unequal intervals – Lagrange's interpolation formula- Newton's divide difference formula.

(8 hrs)

(10 hrs)

(10hrs)

DEPARTMENT OF CSE - DATA SCIENCE

UNIT – V: Numerical differentiation and integration, Solution of ordinary differential equations with initial conditions: (10 hrs)

Numerical differentiation using interpolating polynomial – Trapezoidal rule– Simpson's 1/3rd and 3/8th rule– Solution of initial value problems by Taylor's series– Picard's method of successive approximations– Euler's method –Runge-Kutta method (second and fourth order).

Text Books:

- 1. B. S. Grewal, Higher Engineering Mathematics, 44th Edition, Khanna Publishers.
- 2. B. V. Ramana, Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Education.
- 3. David Poole, Linear Algebra- A modern introduction, 4th Edition, Cengage.

Reference Books:

- 1. Steven C. Chapra, Applied Numerical Methods with MATLAB for Engineering and Science, Tata Mc. Graw Hill Education.
- 2. M. K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age International Publications.
- 3. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press.

DEPARTMENT OF CSE - DATA SCIENCE

I Year - II Semester		L	Τ	Р	С
1 Tear - 11 Semester		3	0	0	3
	APPLIED PHYSICS (BS1202)				
(For All	Circuital Branches like ECE, EEE, CSE etc)				

Course Objectives:

- 1. Bridging the gap between the physics in school at 10+2 level and UG level engineering courses.
- 2. To identify the importance of the optical phenomenon i.e. interference, diffraction and polarization related to its Engineering applications
- 3. Understand the mechanism of emission of light, utilization of lasers as coherent light sources for low and high energy applications, study of propagation of light through optical fibers and their implications in optical communications.
- 4. Enlightenment of the concepts of Quantum Mechanics and to provide fundamentals of deBroglie matter waves, quantum mechanical wave equation and its application, the importance of free electron theory for metals and band theory for crystalline solids. Metals- Semiconductors-Insulators concepts utilization of transport phenomenon of charge carriers in semiconductors.
- 5. To explain the significant concepts of dielectric and magnetic materials that leads to potential applications in the emerging micro devices.
- 6. To Understand the physics of Semiconductors and their working mechanism. To give an impetus on the subtle mechanism of superconductors using the concept of BCS theory and their fascinating applications.

Course Outcomes:

- Explain the need of coherent sources and the conditions for sustained interference (L2). Identify the applications of interference in engineering (L3). Analyze the differences between interference and diffraction with applications (L4). Illustrate the concept of polarization of light and its applications (L2). Classify ordinary refracted light and extraordinary refracted rays by their states of polarization (L2)
- 2. Explain various types of emission of radiation (L2). Identify the role of laser in engineering applications (L3). Describe the construction and working principles of various types of lasers (L1). Explain the working principle of optical fibers (L2). Classify optical fibers based on refractive index profile and mode of propagation (L2). Identify the applications of optical fibers in medical, communication and other fields (L2). Apply the fiber optic concepts in various fields (L3).
- 3. Describe the dual nature of matter (L1). Explain the significance of wave function (L2). Identify the role of Schrodinger's time independent wave equation in studying particle in one-dimensional infinite potential well (L3). Identify the role of classical and quantum free electron theory in the study of electrical conductivity (L3). Classify the energy bands of solids (L2).
- 4. Explain the concept of dielectric constant and polarization in dielectric materials (L2). Summarize various types of polarization of dielectrics (L2). Interpret Lorentz field and Claussius-Mosotti relation in dielectrics (L2). Classify the magnetic materials based on susceptibility and their temperature dependence (L2). Explain the applications of dielectric and magnetic materials (L2). Apply the concept of magnetism to magnetic devices (L3)

DEPARTMENT OF CSE - DATA SCIENCE

5. Outline the properties of charge carriers in semiconductors (L2). Identify the type of semiconductor using Hall effect (L2). Identify applications of semiconductors in electronic devices (L2). Classify superconductors based on Meissner's effect (L2). Explain Meissner's effect, BCS theory & Josephson effect in superconductors (L2).

Unit-I: Wave Optics

12hrs

Interference: Principle of superposition –Interference of light - Interference in thin films (Reflection Geometry) & applications - Colors in thin films- Newton's Rings- Determination of wavelength and refractive index.

Diffraction: Introduction - Fresnel and Fraunhofer diffraction - Fraunhofer diffraction due to single slit, double slit - N-slits (Qualitative) – Diffraction Grating - Dispersive power and resolving power of Grating(Qualitative).

Polarization: Introduction-Types of polarization - Polarization by reflection, refraction and Double refraction - Nicol's Prism -Half wave and Quarter wave plates.

Unit Outcomes:

The students will be able to

- **Explain** the need of coherent sources and the conditions for sustained interference (L2)
- Identify engineering applications of interference (L3)
- > Analyze the differences between interference and diffraction with applications (L4)
- > Illustrate the concept of polarization of light and its applications (L2)
- > Classify ordinary polarized light and extraordinary polarized light (L2)

Unit-II: Lasers and Fiber optics

Lasers: Introduction – Characteristics of laser – Spontaneous and Stimulated emissions of radiation – Einstein's coefficients – Population inversion – Lasing action - Pumping mechanisms – Ruby laser – He-Ne laser - Applications of lasers.

Fiber optics: Introduction –Principle of optical fiber- Acceptance Angle - Numerical Aperture - Classification of optical fibers based on refractive index profile and modes – Propagation of electromagnetic wave through optical fibers - Applications.

Unit Outcomes:

The students will be able to

- > Understand the basic concepts of LASER light Sources (L2)
- > Apply the concepts to learn the types of lasers (L3)
- Identifies the Engineering applications of lasers (L2)
- **Explain** the working principle of optical fibers (L2)
- Classify optical fibers based on refractive index profile and mode of propagation (L2)
- Identify the applications of optical fibers in various fields (L2)

Unit III: Quantum Mechanics, Free Electron Theory and Band theory 10hrs

Quantum Mechanics: Dual nature of matter – Heisenberg's Uncertainty Principle – Significance and properties of wave function – Schrodinger's time independent and dependent wave equations– Particle in a one-dimensional infinite potential well.

Free Electron Theory: Classical free electron theory (Qualitative with discussion of merits and demerits) – Quantum free electron theory– Equation for electrical conductivity based on quantum free electron theory-Fermi-Dirac distribution- Density of states (3D) - Fermi energy.

Band theory of Solids: Bloch's Theorem (Qualitative) - Kronig - Penney model (Qualitative)-

8hrs

DEPARTMENT OF CSE - DATA SCIENCE

E vs K diagram - v vs K diagram - effective mass of electron – Classification of crystalline solids–concept of hole.

Unit Outcomes:

The students will be able to

- **Explain** the concept of dual nature of matter (L2)
- > **Understand** the significance of wave function (L2)
- > Interpret the concepts of classical and quantum free electron theories (L2)
- **Explain** the importance of K-P model
- Classify the materials based on band theory (L2)
- > Apply the concept of effective mass of electron (L3)

Unit-IV: Dielectric and Magnetic Materials

Dielectric Materials: Introduction - Dielectric polarization - Dielectric polarizability, Susceptibility and Dielectric constant - Types of polarizations- Electronic (Quantitative), Ionic (Quantitative) and Orientation polarizations (Qualitative) - Lorentz internal field- Clausius-Mossotti equation- Piezoelectricity.

Magnetic Materials: Introduction - Magnetic dipole moment - Magnetization-Magnetic susceptibility and permeability - Origin of permanent magnetic moment - Classification of magnetic materials: Dia, para, Ferro, antiferro&Ferri magnetic materials - Domain concept for Ferromagnetism & Domain walls (Qualitative) - Hysteresis - soft and hard magnetic materials- Eddy currents- Engineering applications.

Unit Outcomes: The students will be able to

- **Explain** the concept of dielectric constant and polarization in dielectric materials (L2)
- Summarize various types of polarization of dielectrics (L2)
- Interpret Lorentz field and Claussius- Mosotti relation in dielectrics(L2)
- Classify the magnetic materials based on susceptibility and their temperature dependence (L2)
- **Explain** the applications of dielectric and magnetic materials (L2)
- > Apply the concept of magnetism to magnetic data storage devices (L3)

Unit – V: Semiconductors and Superconductors

Semiconductors: Introduction- Intrinsic semiconductors – Density of charge carriers – Electrical conductivity – Fermi level – extrinsic semiconductors – density of charge carriers – dependence of Fermi energy on carrier concentration and temperature - Drift and diffusion currents – Einstein's equation- Hall effect – Hall coefficient –Applications of Hall effect.

Superconductors: Introduction – Properties of superconductors – Meissner effect – Type I and Type II superconductors – BCS theory (Qualitative) – Josephson effects (AC and DC) – SQUIDs

- High T_c superconductors - Applications of superconductors.

Unit Outcomes:

The students will be able to

- Classify the energy bands of semiconductors (L2)
- > Interpret the direct and indirect band gap semiconductors (L2)
- > **Identify** the type of semiconductor using Hall effect (L2)
- > **Identify** applications of semiconductors in electronic devices (L2)
- Classify superconductors based on Meissner's effect (L2)
- **Explain** Meissner's effect, BCS theory & Josephson effect in superconductors (L2)

10hrs

8hrs

DEPARTMENT OF CSE - DATA SCIENCE

Text books:

- 1. M.N.Avadhanulu, P.G.Kshirsagar& TVS Arun Murthy" A Text book of Engineering Physics"-S.Chand Publications, 11th Edition 2019.
- 2. Engineering Physics" by D.K.Bhattacharya and PoonamTandon, Oxford press (2015).
- 3. Applied Physics by P.K.Palanisamy SciTech publications.

Reference Books:

- 1. Fundamentals of Physics Halliday, Resnick and Walker, John Wiley & Sons
- 2. Engineering Physics by M.R.Srinivasan, New Age international publishers (2009).
- 3. Shatendra Sharma, Jyotsna Sharma, "Engineering Physics", Pearson Education, 2018
- 4. Engineering Physics Sanjay D. Jain, D. Sahasrabudhe and Girish, University Press
- 5. Semiconductor physics and devices- Basic principle Donald A, Neamen, McGraw Hill
- 6. B.K. Pandey and S. Chaturvedi, Engineering Physics, Cengage Learning

DEPARTMENT OF CSE - DATA SCIENCE

fg						
	I Voor II Somostor		L	Т	Р	С
	I Year - II Semester		3	0	0	3
		DIGITAL LOGIC DESIGN (ES1201)				

Course objectives:

- To study the basic philosophy underlying the various number systems, negative number representation, binary arithmetic, theory of Boolean algebra and map method for minimization of switching functions.
- To introduce the basic tools for design of combinational and sequential digital logic.
- To learn simple digital circuits in preparation for computer engineering.

Course outcomes:

A student who successfully fulfills the course requirements will have demonstrated:

- An ability to define different number systems, binary addition and subtraction, 2's complement representation and operations with this representation.
- An ability to understand the different switching algebra theorems and apply them for logic functions.
- An ability to define the Karnaugh map for a few variables and perform an algorithmic reduction of logic functions.
- Students will be able to design various logic gates starting from simple ordinary gates to complex programmable logic devices & arrays.
- Students will be able to design various sequential circuits starting from flip-flop to registers and counters.

UNIT I: Digital Systems and Binary Numbers

Digital Systems, Binary Numbers, Octal and Hexadecimal Numbers, Complements of Numbers, Signed Binary Numbers, Arithmetic addition and subtraction, 4-bit codes: BCD, EXCESS 3, alphanumeric codes, 9's complement, 2421, etc..

UNIT II: Concept of Boolean algebra

Basic Theorems and Properties of Boolean algebra, Boolean Functions, Canonical and Standard Forms, Minterms and Maxterms.

Gate level Minimization

Map Method, Three-Variable K-Map, Four Variable K-Maps. Products of Sum Simplification, Sum of Products Simplification, Don't – Care Conditions, NAND and NOR Implementation, ExclusiveOR Function.

UNIT III: Combinational Logic

Introduction, Analysis Procedure, Binary Adder–Subtractor, Binary Multiplier, Decoders, Encoders, Multiplexers, Demultiplexers, Priority Encoder, Code Converters, Magnitude Comparator, HDL Models of Combinational Circuits.

Realization of Switching Functions Using PROM, PAL and PLA.

UNIT IV: Synchronous Sequential Logic

Introduction to Sequential Circuits, Storage Elements: Latches, Flip-Flops, RS- Latch Using NAND and NOR Gates, Truth Tables. RS, JK, T and D Flip Flops, Truth and Excitation Tables, Conversion of Flip Flops.

DEPARTMENT OF CSE - DATA SCIENCE

UNIT V: Registers and Counters

Registers, Shift Registers, Ripple Counters, Synchronous Counters, Ring Counter, Johnson Counter.

Text Books:

- 1) Digital Design, 5/e, M.Morris Mano, Michael D Ciletti, PEA.
- 2) Fundamentals of Logic Design, 5/e, Roth, Cengage.

Reference Books:

- 1) Digital Logic and Computer Design, M.Morris Mano, PEA.
- 2) Digital Logic Design, Leach, Malvino, Saha, TMH.
- 3) Modern Digital Electronics, R.P. Jain, TMH.

DEPARTMENT OF CSE - DATA SCIENCE

I Voor II Somostor		L	Т	Р	C
I Year – II Semester		3	0	0	3
	DUTION DOCO AMAINO (EC1202)				

PYTHON PROGRAMMING (ES1202)

Course Objectives:

The Objectives of Python Programming are

- To learn about Python programming language syntax, semantics, and the runtime environment
- To be familiarized with universal computer programming concepts like data types, containers
- To be familiarized with general computer programming concepts like conditional execution, loops & functions
- To be familiarized with general coding techniques and object-oriented programming

Course Outcomes:

- Develop essential programming skills in computer programming concepts like data types, containers
- Apply the basics of programming in the Python language
- Solve coding tasks related conditional execution, loops
- Solve coding tasks related to the fundamental notions and techniques used in objectoriented programming

UNIT I

Introduction: Introduction to Python, Program Development Cycle, Input, Processing, and Output, Displaying Output with the Print Function, Comments, Variables, Reading Input from the Keyboard, Performing Calculations, Operators. Type conversions, Expressions, More about Data Output.

Data Types, and Expression: Strings Assignment, and Comment, Numeric Data Types and Character Sets, Using functions and Modules.

Decision Structures and Boolean Logic: if, if-else, if-elif-else Statements, Nested Decision Structures, Comparing Strings, Logical Operators, Boolean Variables. Repetition Structures: Introduction, while loop, for loop, Calculating a Running Total, Input Validation Loops, Nested Loops.

UNIT II

Control Statement: Definite iteration for Loop Formatting Text for output, Selection if and if else Statement, Conditional Iteration The While Loop

Strings and Text Files: Accessing Character and Substring in Strings, Data Encryption, Strings and Number Systems, String Methods Text Files.

UNIT III

List and Dictionaries: Lists, Defining Simple Functions, Dictionaries

Design with Function: Functions as Abstraction Mechanisms, Problem Solving with Top Down Design, Design with Recursive Functions, Case Study Gathering Information from a File System, Managing a Program's Namespace, Higher Order Function.

Modules: Modules, Standard Modules, Packages.

DEPARTMENT OF CSE - DATA SCIENCE

UNIT IV

File Operations: Reading config files in python, Writing log files in python, Understanding read functions, read(), readline() and readlines(), Understanding write functions, write() and writelines(), Manipulating file pointer using seek, Programming using file operations

Object Oriented Programming: Concept of class, object and instances, Constructor, class attributes and destructors, Real time use of class in live projects, Inheritance, overlapping and overloading operators, Adding and retrieving dynamic attributes of classes, Programming using Oops support

Design with Classes: Objects and Classes, Data modeling Examples, Case Study An ATM, Structuring Classes with Inheritance and Polymorphism

UNIT V

Errors and Exceptions: Syntax Errors, Exceptions, Handling Exceptions, Raising Exceptions, User-defined Exceptions, Defining Clean-up Actions, Redefined Clean-up Actions.

Graphical User Interfaces: The Behavior of Terminal Based Programs and GUI -Based, Programs, Coding Simple GUI-Based Programs, Other Useful GUI Resources.

Programming: Introduction to Programming Concepts with Scratch.

Text Books

- 1) Fundamentals of Python First Programs, Kenneth. A. Lambert, Cengage.
- 2) Python Programming: A Modern Approach, VamsiKurama, Pearson.

Reference Books:

- 1) Introduction to Python Programming, Gowrishankar.S, Veena A, CRC Press.
- 2) Introduction to Programming Using Python, Y. Daniel Liang, Pearson.

e-R esources:

https://www.tutorialspoint.com/python3/python_tutorial.pdf

DEPARTMENT OF CSE - DATA SCIENCE

I Voor II Somoston		L	Т	Р	С		
I Year – II Semester		3	0	0	3		
DATA STRUCTURES (CS1201)							

Course Objectives:

The objective of the course is to

- Introduce the fundamental concept of data structures and abstract data types
- Emphasize the importance of data structures in developing and implementing efficient algorithms
- Describe how arrays, records, linked structures, stacks, queues, trees, and graphs are represented in memory and used by algorithms

Course Outcomes:

After completing this course a student will be able to:

- Summarize the properties, interfaces, and behaviors of basic abstract data types
- Discuss the computational efficiency of the principal algorithms for sorting & searching
- Use arrays, records, linked structures, stacks, queues, trees, and Graphs in writing programs
- Demonstrate different methods for traversing trees

UNIT I

Data Structures - Definition, Classification of Data Structures, Operations on Data Structures, Abstract Data Type (ADT), Preliminaries of algorithms. Time and Space complexity. Searching - Linear search, Binary search, Fibonacci search.

Sorting- Insertion sort, Selection sort, Exchange (Bubble sort, quick sort), distribution (radix sort), merging (Merge sort) algorithms.

UNIT II

Linked List: Introduction, Single linked list, Representation of Linked list in memory, Operations on Single Linked list-Insertion, Deletion, Search and Traversal ,Reversing Single Linked list, Applications on Single Linked list- Polynomial Expression Representation ,Addition and Multiplication, Sparse Matrix Representation using Linked List, Advantages and Disadvantages of Single Linked list, Double Linked list-Insertion, Deletion, Circular Linked list-Insertion, Deletion.

UNIT III

Queues: Introduction to Queues, Representation of Queues-using Arrays and using Linked list, Implementation of Queues-using Arrays and using Linked list, Application of Queues-Circular Queues, Dequeues, Priority Queues, Multiple Queues.

Stacks: Introduction to Stacks, Array Representation of Stacks, Operations on Stacks, Linked list Representation of Stacks, Operations on Linked Stack, Applications-Reversing list, Factorial Calculation, Infix to Postfix Conversion, Evaluating Postfix Expressions.

DEPARTMENT OF CSE - DATA SCIENCE

UNIT IV

Trees: Basic Terminology in Trees, Binary Trees-Properties, Representation of Binary Trees using Arrays and Linked lists. Binary Search Trees- Basic Concepts, BST Operations: Insertion, Deletion, Tree Traversals, Applications-Expression Trees, Heap Sort, Balanced Binary Trees-AVL Trees, Insertion, Deletion and Rotations.

UNIT V

Graphs: Basic Concepts, Representations of Graphs-Adjacency Matrix and using Linked list, Graph Traversals (BFT & DFT), Applications- Minimum Spanning Tree Using Prims &Kruskals Algorithm, Dijkstra's shortest path, Transitive closure, Warshall's Algorithm.

Text Books:

- 1) Data Structures Using C. 2nd Edition.ReemaThareja, Oxford.
- 2) Data Structures and algorithm analysis in C, 2nded, Mark Allen Weiss.

Reference Books:

- 1) Fundamentals of Data Structures in C, 2nd Edition, Horowitz, Sahni, Universities Press.
- 2) Data Structures: A PseudoCode Approach, 2/e, Richard F.Gilberg, Behrouz A. Forouzon, Cengage.
- 3) Data Structures with C, Seymour Lipschutz TMH

e-R esources:

- 1) http://algs4.cs.princeton.edu/home/
- 2) https://faculty.washington.edu/jstraub/dsa/Master_2_7a.pdf

DEPARTMENT OF CSE - DATA SCIENCE

I Voor II Somostor		L	Τ	Р	С		
I Year - II Semester		0	0	3	1.5		
	APPLIED PHYSIC LAB (BS1204)						
(For All Circuital Branches like CSE, ECE, EEE etc.)						

(Any 10 of the following listed experiments)

List of Applied Physics Experiments

- 1. Determination of thickness of thin object by wedge method.
- 2. Determination of radius of curvature of a given plano convex lens by Newton's rings.
- 3. Determination of wavelengths of different spectral linesinmercury spectrum using diffraction grating in normal incidence configuration.
- 4. Determination of dispersive power of the prism.
- 5. Determination of dielectric constant using charging and discharging method.
- 6. Study the variation of B versus H by magnetizing the magnetic material (B-H curve).
- 7. Determination of numerical aperture and acceptance angle of an optical fiber.
- 8. Determination of wavelength of Laser light using diffraction grating.
- 9. Estimation of Planck's constant using photoelectric effect.
- 10. Determination of the resistivity of semiconductor by four probe method.
- 11. To determine the energy gap of a semiconductor using p-n junction diode.
- 12. Magnetic field along the axis of a current carrying circular coil by Stewart&Gee's Method
- 13. Determination of Hall voltage and Hall coefficient of a given semiconductor using Hall Effect.
- 14. Measurement of resistance of a semiconductor with varying temperature.
- 15. Resistivity of a Superconductor using four probe method & Meissner effect.

References:

1. S. Balasubramanian, M.N. Srinivasan "A Text Book of Practical Physics"- S Chand Publishers, 2017.

DEPARTMENT OF CSE - DATA SCIENCE

I Voon II Somoston	L	Т	P	С
I Year – II Semester	0	0	3	1.5

PYTHON PROGRAMMING LAB (ES1203)

Course Objectives:

The aim of Python Programming Lab is

- To acquire programming skills in core Python.
- To acquire Object Oriented Skills in Python
- To develop the skill of designing Graphical user Interfaces in Python
- To develop the ability to write database applications in Python

Course Outcomes:

By the end of this lab, the student is able to

- Write, Test and Debug Python Programs
- Use Conditionals and Loops for Python Programs
- Use functions and represent Compound data using Lists, Tuples and Dictionaries
- Use various applications using python
- 1) Write a program that asks the user for a weight in kilograms and converts it to pounds. There are 2.2 pounds in a kilogram.
- 2) Write a program that asks the user to enter three numbers (use three separate input statements). Create variables called total and average that hold the sum and average of the three numbers and print out the values of total and average.
- 3) Write a program that uses a *for* loop to print the numbers 8, 11, 14, 17, 20, ..., 83, 86, 89.
- 4) Write a program that asks the user for their name and how many times to print it. The program should print out the user's name the specified number of times.
- 5) Use a *for*loop to print a triangle like the one below. Allow the user to specify how high the triangle should be.
 - * ** *** ***
- 6) Generate a random number between 1 and 10. Ask the user to guess the number and print a message based on whether they get it right or not.
- 7) Write a program that asks the user for two numbers and prints *Close* if the numbers are within .001 of each other and Not close otherwise.
- 8) Write a program that asks the user to enter a word and prints out whether that word contains any vowels.
- 9) Write a program that asks the user to enter two strings of the same length. The program should then check to see if the strings are of the same length. If they are not, the program should print an appropriate message and exit. If they are of the same length, the program should alternate the characters of the two strings. For example, if the user enters *abcde*and*ABCDE* the program should print out *AaBbCcDdEe*.
- 10) Write a program that asks the user for a large integer and inserts commas into it according to the standard American convention for commas in large numbers. For instance, if the user enters 1000000, the output should be 1,000,000.
- 11) In algebraic expressions, the symbol for multiplication is often left out, as in 3x+4y or 3(x+5). Computers prefer those expressions to include the multiplication symbol, like 3*x+4*y or 3*(x+5). Write a program that asks the user for an algebraic expression and

DEPARTMENT OF CSE - DATA SCIENCE

then inserts multiplication symbols where appropriate.

- 12) Write a program that generates a list of 20 random numbers between 1 and 100.
 - (a) Print the list.
 - (b) Print the average of the elements in the list.
 - (c) Print the largest and smallest values in the list.
 - (d) Print the second largest and second smallest entries in the list
 - (e) Print how many even numbers are in the list.
- 13) Write a program that asks the user for an integer and creates a list that consists of the factors of that integer.
- 14) Write a program that generates 100 random integers that are either 0 or 1. Then find the longest run of zeros, the largest number of zeros in a row. For instance, the longest run of zeros in [1,0,1,1,0,0,0,0,1,0,0] is 4.
- 15) Write a program that removes any repeated items from a list so that each item appears at most once. For instance, the list [1,1,2,3,4,3,0,0] would become [1,2,3,4,0].
- 16) Write a program that asks the user to enter a length in feet. The program should then give the user the option to convert from feet into inches, yards, miles, millimeters, centimeters, meters, or kilometers. Say if the user enters a 1, then the program converts to inches, if they enter a 2, then the program converts to yards, etc. While this can be done with if statements, it is much shorter with lists and it is also easier to add new conversions if you use lists.
- 17) Write a function called *sum_digits* that is given an integer num and returns the sum of the digits of num.
- 18) Write a function called *first_diff*that is given two strings and returns the first location in which the strings differ. If the strings are identical, it should return -1.
- 19) Write a function called *number_of_factors* that takes an integer and returns how many factors the number has.
- 20) Write a function called *is_sorted*that is given a list and returns True if the list is sorted and False otherwise.
- 21) Write a function called root that is given a number x and an integer n and returns $x^{1/n}$. In the function definition, set the default value of n to 2.
- 22) Write a function called primes that is given a number n and returns a list of the first n primes. Let the default value of n be 100.
- 23) Write a function called merge that takes two already sorted lists of possibly different lengths, and merges them into a single sorted list.
 - (a) Do this using the sort method. (b) Do this without using the sort method.
- 24) Write a program that asks the user for a word and finds all the smaller words that can be made from the letters of that word. The number of occurrences of a letter in a smaller word can't exceed the number of occurrences of the letter in the user's word.
- 25) Write a program that reads a file consisting of email addresses, each on its own line. Your program should print out a string consisting of those email addresses separated by semicolons.
- 26) Write a program that reads a list of temperatures from a file called *temps.txt*, converts those temperatures to Fahrenheit, and writes the results to a file called ftemps.txt.

DEPARTMENT OF CSE - DATA SCIENCE

- 27) Write a class called Product. The class should have fields called name, amount, and price, holding the product's name, the number of items of that product in stock, and the regular price of the product. There should be a method *get_price*that receives the number of items to be bought and returns a the cost of buying that many items, where the regular price is charged for orders of less than 10 items, a 10% discount is applied for orders of between 10 and 99 items, and a 20% discount is applied for orders of 100 or more items. There should also be a method called *make_purchase*that receives the number of items to be bought and decreases amount by that much.
- 28) Write a class called Time whose only field is a time in seconds. It should have a method called *convert_to_minutes* that returns a string of minutes and seconds formatted as in the following example: if seconds is 230, the method should return '5:50'. It should also have a method called *convert_to_hours* that returns a string of hours, minutes, and seconds formatted analogously to the previous method.
- 29) Write a class called Converter. The user will pass a length and a unit when declaring an object from the class—for example, c = Converter(9, inches'). The possible units are inches, feet, yards, miles, kilometers, meters, centimeters, and millimeters. For each of these units there should be a method that returns the length converted into those units. For example, using the Converter object created above, the user could call c.feet() and should get 0.75 as the result.
- 30) Write a Python class to implement pow(x, n).
- 31) Write a Python class to reverse a string word by word.
- 32) Write a program that opens a file dialog that allows you to select a text file. The program then displays the contents of the file in a textbox.
- 33) Write a program to demonstrate Try/except/else.
- 34) Write a program to demonstrate try/finally and with/as.

DEPARTMENT OF CSE - DATA SCIENCE

I Year – II Semester		L	Т	Р	С
		0	0	3	1.5
	DATA STRUCTURES LAB (CS1202)				

Course Objectives:

The objective of this lab is to

• Demonstrate the different data structures implementation.

Course Outcomes:

By the end of this lab the student is able to

- Use basic data structures such as arrays and linked list.
- Programs to demonstrate fundamental algorithmic problems including Tree Traversals, Graph traversals, and shortest paths.
- Use various searching and sorting algorithms.

Exercise -1 (Searching)

Write C program that use both recursive and non recursive functions to perform Linear search for a Key value in a given list.

b) Write C program that use both recursive and non recursive functions to perform Binary search for a Key value in a given list.

Exercise – 2 (Sorting-I)

a) Write C program that implement Bubble sort, to sort a given list of integers in ascending order

b) Write C program that implement Quick sort, to sort a given list of integers in ascending order

c) Write C program that implement Insertion sort, to sort a given list of integers in ascending order

Exercise -3 (Sorting-II)

- a) Write C program that implement radix sort, to sort a given list of integers in ascending order
- b) Write C program that implement merge sort, to sort a given list of integers in ascending order

Exercise -4 (Singly Linked List)

- a) Write a C program that uses functions to create a singly linked list
- b) Write a C program that uses functions to perform insertion operation on a singly linked list
- c) Write a C program that uses functions to perform deletion operation on a singly linked list
- d) Write a C program to reverse elements of a single linked list.

Exercise -5(Queue)

- a) Write C program that implement Queue (its operations) using arrays.
- b) Write C program that implement Queue (its operations) using linked lists

Exercise -6 (Stack)

- a) Write C program that implement stack (its operations) using arrays
- b) Write C program that implement stack (its operations) using Linked list
- c) Write a C program that uses Stack operations to evaluate postfix expression

DEPARTMENT OF CSE - DATA SCIENCE

Exercise -7 (Binary Search Tree)

- a) Write a C program to Create a BST
- b) Write a C program to insert a node into a BST.
- c) Write a C program to delete a node from a BST.
- d) Write a recursive C program for traversing a binary tree in preorder, inorder and postorder.

DEPARTMENT OF CSE - DATA SCIENCE

I Year - II Semester		L	Τ	Р	С	
I Year - II Semester		2	0	0	0	
CONSTITUTION OF INDIA (MC1201)						

Course Objectives:

- To Enable the student to understand the importance of constitution
- To understand the structure of executive, legislature and judiciary
- To understand philosophy of fundamental rights and duties
- To understand the autonomous nature of constitutional bodies like Supreme Court and high court controller and auditor general of India and election commission of India.
- To understand the central and state relation financial and administrative

Course Outcomes:

At the end of the course, the student will be able to have a clear knowledge on the following:

- Understand historical background of the constitution making and its importance for building a democratic India.
- Understand the functioning of three wings of the government ie., executive, legislative and judiciary.
- Understand the value of the fundamental rights and duties for becoming good citizen of India.
- Analyze the decentralization of power between central, state and local self-government.
- Apply the knowledge in strengthening of the constitutional institutions like CAG, Election Commission and UPSC for sustaining democracy.
 - 1. Know the sources, features and principles of Indian Constitution.
 - 2. Learn about Union Government, State government and its administration.
 - 3. Get acquainted with Local administration and Pachayati Raj.
 - 4. Be aware of basic concepts and developments of Human Rights.
 - 5. Gain knowledge on roles and functioning of Election Commission

UNIT I

Introduction to Indian Constitution: Constitution meaning of the term, Indian Constitution - Sources and constitutional history, Features - Citizenship, Preamble, Fundamental Rights and Duties, Directive Principles of State Policy.

Learning outcomes: After completion of this unit student will

- Understand the concept of Indian constitution
- Apply the knowledge on directive principle of state policy
- Analyze the History, features of Indian constitution
- Evaluate Preamble Fundamental Rights and Duties

UNIT II

Union Government and its Administration Structure of the Indian Union: Federalism, Centre- State relationship, President: Role, power and position, PM and Council of ministers, Cabinet and Central Secretariat, LokSabha, RajyaSabha, The Supreme Court and High Court: Powers and Functions;

Learning outcomes: After completion of this unit student will

DEPARTMENT OF CSE - DATA SCIENCE

- Understand the structure of Indian government
- Differentiate between the state and central government
- Explain the role of President and Prime Minister
- Know the Structure of supreme court and High court

UNIT III

State Government and its Administration Governor - Role and Position - CM and Council of ministers, State Secretariat: Organisation, Structure and Functions **Learning outcomes**: After completion of this unit student will

- Understand the structure of state government
- Analyze the role Governor and Chief Minister
- Explain the role of state Secretariat
- Differentiate between structure and functions of state secretariat

UNIT IV

A.Local Administration - District's Administration Head - Role and Importance, Municipalities - Mayor and role of Elected Representative - CEO of Municipal Corporation PachayatiRaj: Functions PRI: ZilaPanchayat, Elected officials and their roles, CEO ZilaPanchayat: Block level Organizational Hierarchy - (Different departments), Village level - Role of Elected and Appointed officials - Importance of grass root democracy

Learning outcomes:-After completion of this unit student will

- Understand the local Administration
- Compare and contrast district administration role and importance
- Analyze the role of Myer and elected representatives of Municipalities
- Evaluate Zillapanchayat block level organisation

UNIT V

Election Commission: Election Commission- Role of Chief Election Commissioner and Election Commissionerate State Election Commission:, Functions of Commissions for the welfare of SC/ST/OBC and women

Learning outcomes: After completion of this unit student will

- Know the role of Election Commission apply knowledge
- Contrast and compare the role of Chief Election commissioner and Commissiononerate
- Analyze role of state election commission
- Evaluate various commissions of viz SC/ST/OBC and women

References:

- 1) Durga Das Basu, Introduction to the Constitution of India, Prentice Hall of India Pvt. Ltd.
- 2) SubashKashyap, Indian Constitution, National Book Trust
- 3) J.A. Siwach, Dynamics of Indian Government & Politics
- 4) D.C. Gupta, Indian Government and Politics
- 5) H.M.Sreevai, Constitutional Law of India, 4th edition in 3 volumes (Universal Law Publication)
- 6) J.C. Johari, Indian Government and Politics Hans
- 7) J. Raj IndianGovernment and Politics
- 8) M.V. Pylee, Indian Constitution Durga Das Basu, Human Rights in Constitutional Law, Prentice Hall of India Pvt. Ltd.. New Delhi

DEPARTMENT OF CSE - DATA SCIENCE

 Noorani, A.G., (South Asia Human Rights Documentation Centre), Challenges to Civil Right), Challenges to Civil Rights Guarantees in India, Oxford University Press 2012

e-Resources:

- 1) nptel.ac.in/courses/109104074/8
- 2) nptel.ac.in/courses/109104045/
- 3) nptel.ac.in/courses/101104065/
- 4) www.hss.iitb.ac.in/en/lecture-details
- 5) www.iitb.ac.in/en/event/2nd-lecture-institute-lecture-series-indian-constitution